当前位置:网站首页>事故指标统计
事故指标统计
2022-07-06 02:18:00 【小胖超凶哦!】
[[email protected] ~]# hive
Logging initialized using configuration in jar:file:/usr/local/soft/hive-1.2.1/lib/hive-common-1.2.1.jar!/hive-log4j.properties
hive> select sgfssj from dwd.base_acd_file order by sgfssj limit 10;
2006-01-22 09:30:00.0
2006-12-21 00:15:00.0
2006-12-21 13:50:00.0
2006-12-21 16:30:00.0
2006-12-21 18:02:00.0
2006-12-22 11:30:00.0
2006-12-22 13:30:00.0
2006-12-22 14:30:00.0
2006-12-22 17:30:00.0
2006-12-22 23:55:00.0
Time taken: 28.559 seconds, Fetched: 10 row(s)
hive> select sgfssj from dwd.base_acd_file order by sgfssj desc limit 10;
OK
2020-10-14 17:28:00.0
2020-10-14 11:16:00.0
2020-10-13 23:06:00.0
2020-10-13 19:25:00.0
2020-10-13 14:12:00.0
2020-10-13 12:10:00.0
2020-10-12 16:04:00.0
2020-10-12 11:50:00.0
2020-10-12 07:38:00.0
2020-10-12 07:30:00.0
Time taken: 21.673 seconds, Fetched: 10 row(s)
hive> select current_date;
OK
2022-07-05
Time taken: 0.459 seconds, Fetched: 1 row(s)
hive> select year(sgfssj),count(*) from dwd.base_acd_file group by year(sgfssj);
2006 43
2007 1082
2008 1070
2009 1377
2010 1579
2011 2604
2012 2117
2013 1802
2014 1936
2015 1991
2016 2094
2017 1933
2018 2373
2019 2617
2020 1930
Time taken: 22.075 seconds, Fetched: 15 row(s)
hive> select substr(sgfssj,1,10)
> ,count(1)as dr_sgs
> from dwd.base_acd_file
> group by substr(sgfssj,1,10);
Time taken: 45.99 seconds, Fetched: 4966 row(s)
hive> select t1.tjrq
> ,t1.dr_sgs
> ,sum(t1.dr_sgs)over (partition by substr(t1.tjrq,1,4))as jn_sgs
> from(
> select substr(sgfssj,1,10)as tjrq
> ,count(1)as dr_sgs
> from dwd.base_acd_file
> group by substr(sgfssj,1,10)
> )t1;
Time taken: 45.99 seconds, Fetched: 4966 row(s)hive> select t1.tjrq
> ,t1.dr_sgs
> ,sum(t1.dr_sgs)over (partition by substr(t1.tjrq,1,4))as jn_sgs
> ,lag(t1.dr_sgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_sgs
> from(
> select substr(sgfssj,1,10)as tjrq
> ,count(1)as dr_sgs
> from dwd.base_acd_file
> group by substr(sgfssj,1,10)
> )t1;
Time taken: 73.903 seconds, Fetched: 4966 row(s)
hive> exit;
[[email protected] ~]# cd /usr/local/soft/spark-2.4.5/
[[email protected] spark-2.4.5]# ls
bin examples LICENSE NOTICE README.md yarn
conf jars licenses python RELEASE
data kubernetes logs R sbin
[[email protected] spark-2.4.5]# spark-sql --conf spark.sql.shuffle.partitions=2
spark-sql> show databases;
22/07/05 11:11:24 INFO codegen.CodeGenerator: Code generated in 227.508135 ms
default
dwd
Time taken: 0.351 seconds, Fetched 2 row(s)
22/07/05 11:11:24 INFO thriftserver.SparkSQLCLIDriver: Time taken: 0.351 seconds, Fetched 2 row(s)
spark-sql> use dwd;
Time taken: 0.041 seconds
22/07/05 11:11:31 INFO thriftserver.SparkSQLCLIDriver: Time taken: 0.041 seconds
spark-sql> show tables;
22/07/05 11:11:41 INFO spark.ContextCleaner: Cleaned accumulator 2
22/07/05 11:11:41 INFO spark.ContextCleaner: Cleaned accumulator 0
22/07/05 11:11:41 INFO spark.ContextCleaner: Cleaned accumulator 1
22/07/05 11:11:41 INFO codegen.CodeGenerator: Code generated in 13.604985 ms
dwd base_acd_file false
dwd base_acd_filehuman false
dwd base_bd_drivinglicense false
dwd base_bd_vehicle false
dwd base_vio_force false
dwd base_vio_surveil false
dwd base_vio_violation false
Time taken: 0.119 seconds, Fetched 7 row(s)
22/07/05 11:11:41 INFO thriftserver.SparkSQLCLIDriver: Time taken: 0.119 seconds, Fetched 7 row(s)
spark-sql> select tt1.tjrq
> ,tt1.dr_sgs
> ,tt1.jn_sgs
> ,tt1.qntq_sgs
> ,NVL(round((abs(tt1.dr_sgs-tt1.qntq_sgs)/NVL(tt1.qntq_sgs,1))*100,2),0) as tb_sgs
> ,if(tt1.dr_sgs-tt1.qntq_sgs>0,"上升",'下降') as tb_sgs_bj
> from(
> select t1.tjrq
> ,t1.dr_sgs
> ,sum(t1.dr_sgs)over (partition by substr(t1.tjrq,1,4))as jn_sgs
> ,lag(t1.dr_sgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_sgs
> from(
> select substr(sgfssj,1,10)as tjrq
> ,count(1)as dr_sgs
> from dwd.base_acd_file
> group by substr(sgfssj,1,10)
> )t1
> )tt1;
Time taken: 0.596 seconds, Fetched 4966 row(s)
22/07/05 11:32:08 INFO thriftserver.SparkSQLCLIDriver: Time taken: 0.596 seconds, Fetched 4966 row(s)
spark-sql> select tt1.tjrq
> ,tt1.dr_sgs
> ,tt1.jn_sgs
> ,tt1.qntq_sgs
> ,NVL(round((abs(tt1.dr_sgs-tt1.qntq_sgs)/NVL(tt1.qntq_sgs,1))*100,2),0) as tb_sgs
> ,if(tt1.dr_sgs-tt1.qntq_sgs>0,"上升",'下降') as tb_sgs_bj
> from(
> select t1.tjrq
> ,t1.dr_sgs
> ,sum(t1.dr_sgs)over (partition by substr(t1.tjrq,1,4))as jn_sgs
> ,lag(t1.dr_sgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_sgs
> from(
> select substr(sgfssj,1,10)as tjrq
> ,count(1)as dr_sgs
> from dwd.base_acd_file
> group by substr(sgfssj,1,10)
> )t1
> )tt1
> order by tt1.tjrq;
Time taken: 5.46 seconds, Fetched 4966 row(s)
22/07/05 14:36:35 INFO thriftserver.SparkSQLCLIDriver: Time taken: 5.46 seconds, Fetched 4966 row(s)spark-sql> select tt1.tjrq
> ,tt1.dr_sgs
> ,tt1.jn_sgs
> ,tt1.qntq_sgs
>
> ,NVL(round((abs(tt1.dr_sgs-tt1.qntq_sgs)/NVL(tt1.qntq_sgs,1))*100,2),0) as tb_sgs
> ,if(tt1.dr_sgs-tt1.qntq_sgs>0,"上升",'下降') as tb_sgs_bj
>
> ,NVL(round((abs(tt1.dr_swsgs-tt1.qntq_swsgs)/NVL(tt1.qntq_swsgs,1))*100,2),0) as tb_swsgs
> ,if(tt1.dr_swsgs-tt1.qntq_swsgs>0,"上升",'下降') as tb_swsgs_bj
> from(
> select t1.tjrq
> ,t1.dr_sgs
> ,t1.dr_swsgs
>
> ,sum(t1.dr_sgs)over (partition by substr(t1.tjrq,1,4))as jn_sgs
> ,lag(t1.dr_sgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_sgs
>
> ,sum(t1.dr_swsgs)over (partition by substr(t1.tjrq,1,4))as jn_swsgs
> ,lag(t1.dr_swsgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_swsgs
> from(
> select substr(sgfssj,1,10)as tjrq
> ,count(1)as dr_sgs
> ,sum(if(swrs7>0,1,0))as dr_swsgs
> from dwd.base_acd_file
> group by substr(sgfssj,1,10)
> )t1
> )tt1
> order by tt1.tjrq;
Time taken: 5.372 seconds, Fetched 4966 row(s)
22/07/05 15:17:19 INFO thriftserver.SparkSQLCLIDriver: Time taken: 5.372 seconds, Fetched 4966 row(s)spark-sql> select tt1.tjrq
> ,tt1.dr_sgs
> ,tt1.jn_sgs
> ,tt1.qntq_sgs
> ,tt1.dr_swsgs
> ,tt1.qntq_swsgs
>
> ,NVL(round((abs(tt1.dr_sgs-tt1.qntq_sgs)/NVL(tt1.qntq_sgs,1))*100,2),0) as tb_sgs
> ,if(tt1.dr_sgs-tt1.qntq_sgs>0,"上升",'下降') as tb_sgs_bj
>
> ,NVL(round((abs(tt1.dr_swsgs-tt1.qntq_swsgs)/NVL(tt1.qntq_swsgs,1))*100,2),0) as tb_swsgs
> ,if(tt1.dr_swsgs-tt1.qntq_swsgs>0,"上升",'下降') as tb_swsgs_bj
> from(
> select t1.tjrq
> ,t1.dr_sgs
> ,t1.dr_swsgs
>
> ,sum(t1.dr_sgs)over (partition by substr(t1.tjrq,1,4))as jn_sgs
> ,lag(t1.dr_sgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_sgs
>
> ,sum(t1.dr_swsgs)over (partition by substr(t1.tjrq,1,4))as jn_swsgs
> ,lag(t1.dr_swsgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_swsgs
> from(
> select substr(sgfssj,1,10)as tjrq
> ,count(1)as dr_sgs
> ,sum(if(swrs7>0,1,0))as dr_swsgs
> from dwd.base_acd_file
> group by substr(sgfssj,1,10)
> )t1
> )tt1
> order by tt1.tjrq;
Time taken: 4.13 seconds, Fetched 4966 row(s)
22/07/05 15:20:00 INFO thriftserver.SparkSQLCLIDriver: Time taken: 4.13 seconds, Fetched 4966 row(s)spark-sql> select tt1.tjrq
> ,tt1.dr_sgs
> ,tt1.jn_sgs
> ,tt1.qntq_sgs
> ,tt1.dr_swsgs
> ,tt1.jn_swsgs
> ,tt1.qntq_swsgs
>
> ,NVL(round((abs(tt1.dr_sgs-tt1.qntq_sgs)/NVL(tt1.qntq_sgs,1))*100,2),0) as tb_sgs
> ,if(tt1.dr_sgs-tt1.qntq_sgs>0,"上升",'下降') as tb_sgs_bj
>
> ,NVL(round((abs(tt1.dr_swsgs-tt1.qntq_swsgs)/NVL(tt1.qntq_swsgs,1))*100,2),0) as tb_swsgs
> ,if(tt1.dr_swsgs-tt1.qntq_swsgs>0,"上升",'下降') as tb_swsgs_bj
> from(
> select t1.tjrq
> ,t1.dr_sgs
> ,t1.dr_swsgs
>
> ,sum(t1.dr_sgs)over (partition by substr(t1.tjrq,1,4))as jn_sgs
> ,lag(t1.dr_sgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_sgs
>
> ,sum(t1.dr_swsgs)over (partition by substr(t1.tjrq,1,4))as jn_swsgs
> ,lag(t1.dr_swsgs,1,1)over (partition by substr(t1.tjrq,6,5)order by substr(t1.tjrq,1,4))as qntq_swsgs
> from(
> select substr(sgfssj,1,10)as tjrq
> ,count(1)as dr_sgs
> ,sum(if(swrs7>0,1,0))as dr_swsgs
> from dwd.base_acd_file
> group by substr(sgfssj,1,10)
> )t1
> )tt1
> order by tt1.tjrq;
Time taken: 5.653 seconds, Fetched 4966 row(s)
22/07/05 15:23:09 INFO thriftserver.SparkSQLCLIDriver: Time taken: 5.653 seconds, Fetched 4966 row(s)边栏推荐
- 【coppeliasim】6自由度路径规划
- 更改对象属性的方法
- Paper notes: limit multi label learning galaxc (temporarily stored, not finished)
- LeetCode 103. Binary tree zigzag level order transverse - Binary Tree Series Question 5
- Adapter-a technology of adaptive pre training continuous learning
- Computer graduation design PHP animation information website
- Apicloud openframe realizes the transfer and return of parameters to the previous page - basic improvement
- SSM assembly
- 【机器人手眼标定】eye in hand
- 2022 eye health exhibition, vision rehabilitation exhibition, optometry equipment exhibition, eye care products exhibition, eye mask Exhibition
猜你喜欢

RDD conversion operator of spark

使用npm发布自己开发的工具包笔记

爬虫(9) - Scrapy框架(1) | Scrapy 异步网络爬虫框架

Redis如何实现多可用区?

Structural theme model (I) STM package workflow
![[Wu Enda machine learning] week5 programming assignment EX4 - neural network learning](/img/37/83953c24ec141667b304f9dac440f1.jpg)
[Wu Enda machine learning] week5 programming assignment EX4 - neural network learning

Minecraft 1.16.5 生化8 模组 2.0版本 故事书+更多枪械
![[Clickhouse] Clickhouse based massive data interactive OLAP analysis scenario practice](/img/3a/63f3e89ddf84f23f950ed9620b4405.jpg)
[Clickhouse] Clickhouse based massive data interactive OLAP analysis scenario practice

RDD partition rules of spark

Jisuanke - t2063_ Missile interception
随机推荐
Blue Bridge Cup embedded_ STM32_ New project file_ Explain in detail
SPI communication protocol
【coppeliasim】6自由度路径规划
Exness: Mercedes Benz's profits exceed expectations, and it is predicted that there will be a supply chain shortage in 2022
一位博士在华为的22年
Global and Chinese markets of general purpose centrifuges 2022-2028: Research Report on technology, participants, trends, market size and share
VIM usage guide
LeetCode 103. Binary tree zigzag level order transverse - Binary Tree Series Question 5
729. 我的日程安排表 I / 剑指 Offer II 106. 二分图
Executing two identical SQL statements in the same sqlsession will result in different total numbers
Blue Bridge Cup embedded_ STM32 learning_ Key_ Explain in detail
【MySQL 15】Could not increase number of max_open_files to more than 10000 (request: 65535)
剑指 Offer 30. 包含min函数的栈
技术管理进阶——什么是管理者之体力、脑力、心力
Install redis
Competition question 2022-6-26
2022 eye health exhibition, vision rehabilitation exhibition, optometry equipment exhibition, eye care products exhibition, eye mask Exhibition
Minecraft 1.16.5 生化8 模组 2.0版本 故事书+更多枪械
Campus second-hand transaction based on wechat applet
[eight part essay] what is the difference between unrepeatable reading and unreal reading?