当前位置:网站首页>[the Nine Yang Manual] 2020 Fudan University Applied Statistics real problem + analysis
[the Nine Yang Manual] 2020 Fudan University Applied Statistics real problem + analysis
2022-07-06 13:31:00 【Elder martial brother statistics】
Catalog
The real part
One 、(20 branch ) A family has two children , Find the probability of the following events :
(1)(10 branch ) The first one is known to be a girl , Find the probability that the second is a girl ;
(2)(10 branch ) One is known to be a girl , Find the probability that the other is a girl .
Two 、(15 branch ) Jiayou 21 A coin , B has 20 A coin , Both of them toss all the coins at the same time , Find the probability that the number of coins with a facing up is more than that of B .
3、 ... and 、(15 branch ) There are countless parallel lines on the plane , Every two parallel lines are spaced 2 rice , Use side length 1 An equilateral triangle of meters is thrown at the plane , Find the probability of triangle pressing to a straight line .
Four 、(15 branch ) 8 A boy 、7 Two girls sit in a row , set up X i = 1 X_{i}=1 Xi=1 It means the first one i i i The first position is the same as i + 1 i+1 i+1 The opposite sex sits in this position , X i = 0 X_{i}=0 Xi=0 It means the first one i i i The first position is the same as i + 1 i+1 i+1 Sitting in the same seat , ξ = ∑ i = 1 14 X i , \xi=\sum_{i=1}^{14} X_{i}, ξ=∑i=114Xi, seek E ξ . E \xi . Eξ.
5、 ... and 、(15 branch ) Cite an expectation that tends to be positive and infinite , But it converges to 0 A sequence of random variables { X n } \left\{X_{n}\right\} { Xn}.
6、 ... and 、(20 branch ) Some come from the general X ∼ f ( x ) = θ x θ − 1 I { 0 < x < 1 } X \sim f(x)=\theta x^{\theta-1} I\{0<x<1\} X∼f(x)=θxθ−1I{ 0<x<1} Of n n n Random sample , seek
(1)(5 branch ) θ \theta θ Of M L E , \mathrm{MLE}, MLE, And verify the unbiased ;
(2)(5 branch ) verification MLE The consistency of ;
(3)(5 branch ) θ \theta θ The moment estimate of ;
(4)(5 branch ) Use the sample median pair θ \theta θ Estimate .
7、 ... and 、(20 branch ) X 1 , … , X n , X_{1}, \ldots, X_{n}, X1,…,Xn, i.i.d ∼ N ( μ , σ 2 ) , \sim N\left(\mu, \sigma^{2}\right), ∼N(μ,σ2), prove [ X ( 1 ) , X ( n ) ] \left[X_{(1)}, X_{(n)}\right] [X(1),X(n)] yes μ \mu μ The confidence level of is 1 − 2 1 − n 1-2^{1-n} 1−21−n The confidence interval of .
8、 ... and 、(20 branch ) Some come from the general X ∼ f ( x ) = 1 2 e − ∣ x − θ ∣ X \sim f(x)=\frac{1}{2} e^{-|x-\theta|} X∼f(x)=21e−∣x−θ∣ Of 7 Random sample , seek θ \theta θ Of MLE.
Nine 、(10 branch ) ( X 1 , X 2 ) ∼ N ( 0 , 0 ; 1 , 1 ; 0 ) , (X_1, X_2) \sim N(0,0 ; 1,1 ; 0), (X1,X2)∼N(0,0;1,1;0), seek X 1 X 2 \frac{X_1}{X_2} X2X1 Probability distribution of .
The analysis part
One 、(20 branch ) A family has two children , Find the probability of the following events :
(1)(10 branch ) The first one is known to be a girl , Find the probability that the second is a girl ;
(2)(10 branch ) One is known to be a girl , Find the probability that the other is a girl .
Solution:
(1) First of all, suppose : The probability of a child being a girl without any information is 0.5 0.5 0.5.
In the event A i A_{i} Ai It means the first one i i i This is a girl ( i = 1 , 2 ) (i=1,2) (i=1,2), be P ( A 2 ∣ A 1 ) = P ( A 1 A 2 ) P ( A 1 ) = 0.25 0.5 = 0.5 P\left(A_{2} \mid A_{1}\right)=\frac{P\left(A_{1} A_{2}\right)}{P\left(A_{1}\right)}=\frac{0.25}{0.5}=0.5 P(A2∣A1)=P(A1)P(A1A2)=0.50.25=0.5.
(2) P ( A 1 A 2 ∣ A 1 ∪ A 2 ) = P ( A 1 A 2 ) P ( A 1 ∪ A 2 ) = 0.25 0.75 = 1 3 P\left(A_{1} A_{2} \mid A_{1} \cup A_{2}\right)=\frac{P\left(A_{1} A_{2}\right)}{P\left(A_{1} \cup A_{2}\right)}=\frac{0.25}{0.75}=\frac{1}{3} P(A1A2∣A1∪A2)=P(A1∪A2)P(A1A2)=0.750.25=31.
Two 、(15 branch ) Jiayou 21 A coin , B has 20 A coin , Both of them toss all the coins at the same time , Find the probability that the number of coins with a facing up is more than that of B .
Solution:
According to the symmetry, we can know , P { P\{ P{ There are more coins with a facing up than with B } = P { \}=P\{ }=P{ There are more coins with a side down than with B } \} }. use A random variable X X X Indicates the number of coins with a facing up , A random variable Y Y Y Indicates the number of coins with B facing up . be :
P { X > Y } = P { 21 − X > 20 − Y } = P { 1 − X > − Y } = P { X < Y + 1 } = P { X ⩽ Y } \begin{aligned} P\{X>Y\} &=P\{21-X>20-Y\}=P\{1-X>-Y\} \\ &=P\{X<Y+1\}=P\{X \leqslant Y\} \end{aligned} P{ X>Y}=P{ 21−X>20−Y}=P{ 1−X>−Y}=P{ X<Y+1}=P{ X⩽Y} also P { X > Y } + P { X ⩽ Y } = 1 P\{X>Y\}+P\{X \leqslant Y\}=1 P{ X>Y}+P{ X⩽Y}=1, therefore P { X > Y } = P { X ⩽ Y } = 0.5 P\{X>Y\}=P\{X \leqslant Y\}=0.5 P{ X>Y}=P{ X⩽Y}=0.5.
3、 ... and 、(15 branch ) There are countless parallel lines on the plane , Every two parallel lines are spaced 2 rice , Use side length 1 An equilateral triangle of meters is thrown at the plane , Find the probability of triangle pressing to a straight line .
Solution:
remember △ A B C \triangle A B C △ABC The three sides of the are a , b , c a, b, c a,b,c. Then there are the following situations when a triangle intersects a parallel line :
(1) One vertex of the triangle is on the parallel line ;
(2) One side of the triangle coincides with the straight line ;
(3) Two lines of triangle Edges intersect parallel lines .
According to the geometric probability P ( 1 ) = P ( 2 ) = 0 P(1)=P(2)=0 P(1)=P(2)=0, So just consider the situation (3). and P ( 3 ) = P a b + P a c + P b c P(3)=P_{a b}+P_{a c}+P_{b c} P(3)=Pab+Pac+Pbc, among P a b P_{a b} Pab edge a 、 b a 、 b a、b Intersect with parallel lines . So , remember P a P_{a} Pa edge a a a Intersect with parallel lines , be P a = P a c + P a b P_{a}=P_{a c}+P_{a b} Pa=Pac+Pab. so P ( 3 ) = 1 2 ( P a + P b + P c ) , P(3)=\frac{1}{2}\left(P_{a}+P_{b}+P_{c}\right), P(3)=21(Pa+Pb+Pc), Now we only need to find P a 、 P b 、 P c P_{a} 、 P_{b} 、 P_{c} Pa、Pb、Pc. This is a Buffon Injection model , The probability is P a = 2 a d π P_{a}=\frac{2 a}{d \pi} Pa=dπ2a, among a a a Is the edge a a a The length of , d d d It's parallel Spacing between lines , Substituting data can be calculated P a = 2 2 π = 1 π P_{a}=\frac{2}{2 \pi}=\frac{1}{\pi} Pa=2π2=π1. Empathy P b = P c = 1 π P_{b}=P_{c}=\frac{1}{\pi} Pb=Pc=π1. so
P { Triangle pressed to a straight line } = P ( 3 ) = 1 2 ( P a + P b + P c ) = 3 2 π . P\{\text { Triangle pressed to a straight line }\}=P(3)=\frac{1}{2}\left(P_{a}+P_{b}+P_{c}\right)=\frac{3}{2 \pi}. P{ Triangle pressed to a straight line }=P(3)=21(Pa+Pb+Pc)=2π3.
Four 、(15 branch ) 8 A boy 、7 Two girls sit in a row , set up X i = 1 X_{i}=1 Xi=1 It means the first one i i i The first position is the same as i + 1 i+1 i+1 The opposite sex sits in this position , X i = 0 X_{i}=0 Xi=0 It means the first one i i i The first position is the same as i + 1 i+1 i+1 Sitting in the same seat , ξ = ∑ i = 1 14 X i , \xi=\sum_{i=1}^{14} X_{i}, ξ=∑i=114Xi, seek E ξ . E \xi . Eξ.
Solution:
E ξ = E ( ∑ i = 1 14 X i ) = ∑ i = 1 14 E X i E \xi=E\left(\sum_{i=1}^{14} X_{i}\right)=\sum_{i=1}^{14} E X_{i} Eξ=E(∑i=114Xi)=∑i=114EXi, Considering all X i X_{i} Xi It's identically distributed , Now E X 1 E X_{1} EX1.
E X 1 = P ( X 1 = 1 ) = C 8 1 C 7 1 C 15 2 = 8 × 7 15 × 14 2 × 1 = 8 15 E X_{1}=P\left(X_{1}=1\right)=\frac{C_{8}^{1} C_{7}^{1}}{C_{15}^{2}}=\frac{8 \times 7}{\frac{15 \times 14}{2 \times 1}}=\frac{8}{15} EX1=P(X1=1)=C152C81C71=2×115×148×7=158 therefore E ξ = ∑ i = 1 14 E X i = 14 E X 1 = 112 15 E \xi=\sum_{i=1}^{14} E X_{i}=14 E X_{1}=\frac{112}{15} Eξ=∑i=114EXi=14EX1=15112.
5、 ... and 、(15 branch ) Cite an expectation that tends to be positive and infinite , But it converges to 0 A sequence of random variables { X n } \left\{X_{n}\right\} { Xn}.
Solution:
Give such a sequence of random variables : P ( X n = 0 ) = 1 − 1 n , P ( X n = n 2 ) = 1 n P\left(X_{n}=0\right)=1-\frac{1}{n}, P\left(X_{n}=n^{2}\right)=\frac{1}{n} P(Xn=0)=1−n1,P(Xn=n2)=n1. E X n = n → + ∞ E X_{n}=n \rightarrow+\infty EXn=n→+∞. and P ( X n ≠ 0 ) = 1 n P\left(X_{n} \neq 0\right)=\frac{1}{n} P(Xn=0)=n1, be X n → P 0 X_{n} \stackrel{P}{\rightarrow} 0 Xn→P0.
6、 ... and 、(20 branch ) Some come from the general X ∼ f ( x ) = θ x θ − 1 I { 0 < x < 1 } X \sim f(x)=\theta x^{\theta-1} I\{0<x<1\} X∼f(x)=θxθ−1I{ 0<x<1} Of n n n Random sample , seek
(1)(5 branch ) θ \theta θ Of M L E , \mathrm{MLE}, MLE, And verify the unbiased ;
(2)(5 branch ) verification MLE The consistency of ;
(3)(5 branch ) θ \theta θ The moment estimate of ;
(4)(5 branch ) Use the sample median pair θ \theta θ Estimate .
Solution:
(1) Likelihood function L ( X ; θ ) = θ n ( ∏ i = 1 n x i ) θ − 1 L(\mathbf{X} ; \theta)=\theta^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta-1} L(X;θ)=θn(∏i=1nxi)θ−1, Log likelihood function ln L = n ln θ + ( θ − 1 ) ∑ i = 1 n ln x i \ln L=n \ln \theta+(\theta-1) \sum_{i=1}^{n} \ln x_{i} lnL=nlnθ+(θ−1)∑i=1nlnxi. Make ∂ ln L ∂ θ = n θ + ∑ i = 1 n ln x i = 0 \frac{\partial \ln L}{\partial \theta}=\frac{n}{\theta}+\sum_{i=1}^{n} \ln x_{i}=0 ∂θ∂lnL=θn+∑i=1nlnxi=0, Solution θ ^ L = n ∑ i = 1 n ( − ln x i ) \hat{\theta}_{L}=\frac{n}{\sum_{i=1}^{n}\left(-\ln x_{i}\right)} θ^L=∑i=1n(−lnxi)n. And because the whole obeys beta distribution , Belong to Exponential family distribution , The stationary point of its log likelihood function must be maximum likelihood estimation . therefore θ ^ L = n ∑ i = 1 n ( − ln x i ) \hat{\theta}_{L}=\frac{n}{\sum_{i=1}^{n}\left(-\ln x_{i}\right)} θ^L=∑i=1n(−lnxi)n yes θ \theta θ Maximum likelihood estimation of . If order Y i = − ln X i ∼ Exp ( θ ) Y_{i}=-\ln X_{i} \sim \operatorname{Exp}(\theta) Yi=−lnXi∼Exp(θ), And from the additivity of gamma distribution T = ∑ i = 1 n y i ∼ G a ( n , θ ) T=\sum_{i=1}^{n} y_{i} \sim G a(n, \theta) T=∑i=1nyi∼Ga(n,θ), Zeji Large likelihood estimation can be written as θ ^ L = n T \hat{\theta}_{L}=\frac{n}{T} θ^L=Tn.
E θ ^ L = E n T = ∫ 0 + ∞ n t θ n Γ ( n ) t n − 1 e − θ t d t = n θ Γ ( n ) ∫ 0 + ∞ ( θ t ) n − 2 e − θ t d ( θ t ) = n θ Γ ( n ) Γ ( n − 1 ) = n n − 1 θ E \hat{\theta}_{L}=E \frac{n}{T}=\int_{0}^{+\infty} \frac{n}{t} \frac{\theta^{n}}{\Gamma(n)} t^{n-1} e^{-\theta t} d t=\frac{n \theta}{\Gamma(n)} \int_{0}^{+\infty}(\theta t)^{n-2} e^{-\theta t} d(\theta t)=\frac{n \theta}{\Gamma(n)} \Gamma(n-1)=\frac{n}{n-1} \theta Eθ^L=ETn=∫0+∞tnΓ(n)θntn−1e−θtdt=Γ(n)nθ∫0+∞(θt)n−2e−θtd(θt)=Γ(n)nθΓ(n−1)=n−1nθ
therefore θ ^ L \hat{\theta}_{L} θ^L No θ \theta θ Unbiased estimation of , But it is gradual and unbiased .
(2) In the last question, we have calculated E θ ^ L = n n − 1 θ → θ E \hat{\theta}_{L}=\frac{n}{n-1} \theta \rightarrow \theta Eθ^L=n−1nθ→θ, Now consider its consistency .
E θ ^ L 2 = E n 2 T 2 = n 2 θ 2 Γ ( n ) ∫ 0 + ∞ ( θ t ) n − 3 e − θ t d ( θ t ) = n 2 θ 2 Γ ( n ) Γ ( n − 2 ) = n 2 ( n − 1 ) ( n − 2 ) θ 2 , E \hat{\theta}_{L}^{2}=E \frac{n^{2}}{T^{2}}=\frac{n^{2} \theta^{2}}{\Gamma(n)} \int_{0}^{+\infty}(\theta t)^{n-3} e^{-\theta t} d(\theta t)=\frac{n^{2} \theta^{2}}{\Gamma(n)} \Gamma(n-2)=\frac{n^{2}}{(n-1)(n-2)} \theta^{2}, Eθ^L2=ET2n2=Γ(n)n2θ2∫0+∞(θt)n−3e−θtd(θt)=Γ(n)n2θ2Γ(n−2)=(n−1)(n−2)n2θ2,
be Var ( θ ^ L ) = E θ ^ L 2 − ( E θ ^ L ) 2 = n 2 θ 2 ( n − 1 ) ( n − 2 ) − n 2 θ 2 ( n − 1 ) 2 = n 2 ( n − 1 ) 2 ( n − 2 ) θ 2 \operatorname{Var}\left(\hat{\theta}_{L}\right)=E \hat{\theta}_{L}^{2}-\left(E \hat{\theta}_{L}\right)^{2}=\frac{n^{2} \theta^{2}}{(n-1)(n-2)}-\frac{n^{2} \theta^{2}}{(n-1)^{2}}=\frac{n^{2}}{(n-1)^{2}(n-2)} \theta^{2} Var(θ^L)=Eθ^L2−(Eθ^L)2=(n−1)(n−2)n2θ2−(n−1)2n2θ2=(n−1)2(n−2)n2θ2.
P ( ∣ θ ^ L − θ ∣ ≥ ε ) = P ( ∣ θ ^ L − n n − 1 θ + n n − 1 θ − θ ∣ ≥ ε ) P\left(\left|\hat{\theta}_{L}-\theta\right| \geq \varepsilon\right)=P\left(\left|\hat{\theta}_{L}-\frac{n}{n-1} \theta+\frac{n}{n-1} \theta-\theta\right| \geq \varepsilon\right) P(∣∣∣θ^L−θ∣∣∣≥ε)=P(∣∣∣∣θ^L−n−1nθ+n−1nθ−θ∣∣∣∣≥ε) ≤ P ( ∣ θ ^ L − n n − 1 θ ∣ ≥ ε 2 ) + P ( ∣ n n − 1 θ − θ ∣ ≥ ε 2 ) \leq P\left(\left|\hat{\theta}_{L}-\frac{n}{n-1} \theta\right| \geq \frac{\varepsilon}{2}\right)+P\left(\left|\frac{n}{n-1} \theta-\theta\right| \geq \frac{\varepsilon}{2}\right) ≤P(∣∣∣∣θ^L−n−1nθ∣∣∣∣≥2ε)+P(∣∣∣∣n−1nθ−θ∣∣∣∣≥2ε) According to Chebyshev inequality P ( ∣ θ ^ L − n n − 1 θ ∣ ≥ ε 2 ) ≤ 4 Var ( θ ^ L ) ε 2 = 4 ε 2 n 2 ( n − 1 ) 2 ( n − 2 ) θ 2 → 0 P\left(\left|\hat{\theta}_{L}-\frac{n}{n-1} \theta\right| \geq \frac{\varepsilon}{2}\right) \leq \frac{4 \operatorname{Var}\left(\hat{\theta}_{L}\right)}{\varepsilon^{2}}=\frac{4}{\varepsilon^{2}} \frac{n^{2}}{(n-1)^{2}(n-2)} \theta^{2} \rightarrow 0 P(∣∣∣θ^L−n−1nθ∣∣∣≥2ε)≤ε24Var(θ^L)=ε24(n−1)2(n−2)n2θ2→0 And for the larger n , P ( ∣ n n − 1 θ − θ ∣ ≥ ε 2 ) = 0 n, P\left(\left|\frac{n}{n-1} \theta-\theta\right| \geq \frac{\varepsilon}{2}\right)=0 n,P(∣∣n−1nθ−θ∣∣≥2ε)=0. therefore P ( ∣ θ ^ L − θ ∣ ≥ ε ) → 0 P\left(\left|\hat{\theta}_{L}-\theta\right| \geq \varepsilon\right) \rightarrow 0 P(∣∣∣θ^L−θ∣∣∣≥ε)→0, in other words θ ^ L \hat{\theta}_{L} θ^L yes θ \theta θ A consistent estimate of .
(3) Overall obedience Beta ( θ , 1 ) \operatorname{Beta}(\theta, 1) Beta(θ,1), Digital features distributed by beta , We know E X = θ θ + 1 E X=\frac{\theta}{\theta+1} EX=θ+1θ. According to the inverse solution θ \theta θ The moment estimate of θ ^ M = x ˉ 1 − x ˉ \hat{\theta}_{M}=\frac{\bar{x}}{1-\bar{x}} θ^M=1−xˉxˉ.
(4) The overall distribution function is F ( x ) = { 0 , x < 0 x θ , 0 ≤ x < 1 1 , x ≥ 1 F(x)=\left\{\begin{array}{cc}0, & x<0 \\ x^{\theta}, & 0 \leq x<1 \\ 1, & x \geq 1\end{array}\right. F(x)=⎩⎨⎧0,xθ,1,x<00≤x<1x≥1 Make F ( x ) = 1 2 F(x)=\frac{1}{2} F(x)=21, Solution x 0.5 = ( 1 2 ) 1 θ x_{0.5}=\left(\frac{1}{2}\right)^{\frac{1}{\theta}} x0.5=(21)θ1, Use the median of the sample m 0.5 m_{0.5} m0.5 Replace the overall median x 0.5 x_{0.5} x0.5, And inverse solution Out θ ^ = 1 log 1 2 m 0.5 = log 1 2 1 2 log 1 2 m 0.5 = log m 0.5 1 2 \hat{\theta}=\frac{1}{\log _{\frac{1}{2}} m_{0.5}}=\frac{\log _{\frac{1}{2}} \frac{1}{2}}{\log _{\frac{1}{2}} m_{0.5}}=\log _{m_{0.5}} \frac{1}{2} θ^=log21m0.51=log21m0.5log2121=logm0.521 It is based on the median pair of samples θ \theta θ Estimation .
7、 ... and 、(20 branch ) X 1 , … , X n , X_{1}, \ldots, X_{n}, X1,…,Xn, i.i.d ∼ N ( μ , σ 2 ) , \sim N\left(\mu, \sigma^{2}\right), ∼N(μ,σ2), prove [ X ( 1 ) , X ( n ) ] \left[X_{(1)}, X_{(n)}\right] [X(1),X(n)] yes μ \mu μ The confidence level of is 1 − 2 1 − n 1-2^{1-n} 1−21−n The confidence interval of .
Solution:
First consider asking U = x ( 1 ) U=x_{(1)} U=x(1) The distribution of , According to the calculation formula of the minimum value distribution
F U ( u ) = 1 − [ 1 − Φ ( u − μ σ ) ] n F_{U}(u)=1-\left[1-\Phi\left(\frac{u-\mu}{\sigma}\right)\right]^{n} FU(u)=1−[1−Φ(σu−μ)]n be P ( μ < x ( 1 ) ) = 1 − F U ( μ ) = [ 1 − Φ ( 0 ) ] n = ( 1 2 ) n = 2 − n P\left(\mu<x_{(1)}\right)=1-F_{U}(\mu)=[1-\Phi(0)]^{n}=\left(\frac{1}{2}\right)^{n}=2^{-n} P(μ<x(1))=1−FU(μ)=[1−Φ(0)]n=(21)n=2−n.
According to the symmetry P ( μ > x ( n ) ) = 2 − n P\left(\mu>x_{(n)}\right)=2^{-n} P(μ>x(n))=2−n. therefore P ( x ( 1 ) ⩽ μ ⩽ x ( n ) ) = 1 − 2 ⋅ 2 − n = 1 − 2 1 − n P\left(x_{(1)} \leqslant \mu \leqslant x_{(n)}\right)=1-2 \cdot 2^{-n}=1-2^{1-n} P(x(1)⩽μ⩽x(n))=1−2⋅2−n=1−21−n
8、 ... and 、(20 branch ) Some come from the general X ∼ f ( x ) = 1 2 e − ∣ x − θ ∣ X \sim f(x)=\frac{1}{2} e^{-|x-\theta|} X∼f(x)=21e−∣x−θ∣ Of 7 Random sample , seek θ \theta θ Of MLE.
Solution:
Likelihood function L ( X ; θ ) = ( 1 2 ) 7 e − ∑ i = 1 7 ∣ x i − θ ∣ = ( 1 2 ) 7 e − ∑ i = 1 7 ∣ x ( i ) − θ ∣ L(\mathbf{X} ; \theta)=\left(\frac{1}{2}\right)^{7} e^{-\sum_{i=1}^{7}\left|x_{i}-\theta\right|}=\left(\frac{1}{2}\right)^{7} e^{-\sum_{i=1}^{7}\left|x_{(i)}-\theta\right|} L(X;θ)=(21)7e−∑i=17∣xi−θ∣=(21)7e−∑i=17∣x(i)−θ∣. here x ( i ) x_{(i)} x(i) It means No i i i Order statistics . In order to make the likelihood function as large as possible , Should make e − ∑ i = 1 7 ∣ x ( 0 ) − θ ∣ e^{-\sum_{i=1}^{7}\left|x_{(0)}-\theta\right|} e−∑i=17∣x(0)−θ∣ As big as possible , That is to make ∑ i = 1 7 ∣ x ( i ) − θ ∣ \sum_{i=1}^{7}\left|x_{(i)}-\theta\right| ∑i=17∣∣x(i)−θ∣∣ As small as possible . The following research ∑ i = 1 7 ∣ x ( i ) − θ ∣ \sum_{i=1}^{7}\left|x_{(i)}-\theta\right| ∑i=17∣∣x(i)−θ∣∣ The state of being :
∑ i = 1 7 ∣ x ( i ) − θ ∣ = ∑ i = 1 3 ( ∣ x ( i ) − θ ∣ + ∣ x ( 7 − i + 1 ) − θ ∣ ) + ∣ x ( 4 ) − θ ∣ \sum_{i=1}^{7}\left|x_{(i)}-\theta\right|=\sum_{i=1}^{3}\left(\left|x_{(i)}-\theta\right|+\left|x_{(7-i+1)}-\theta\right|\right)+\left|x_{(4)}-\theta\right| i=1∑7∣∣x(i)−θ∣∣=i=1∑3(∣∣x(i)−θ∣∣+∣∣x(7−i+1)−θ∣∣)+∣∣x(4)−θ∣∣ ( The above formula will x ( 1 ) , x ( 7 ) x_{(1)}, x_{(7)} x(1),x(7) Divided into one group , x ( 2 ) , x ( 6 ) x_{(2)}, x_{(6)} x(2),x(6) Divided into one group , x ( 3 ) , x ( 5 ) x_{(3)}, x_{(5)} x(3),x(5) Divided into one group , x ( 4 ) x_{(4)} x(4) A single group )
among ∣ x ( i ) − θ ∣ + ∣ x ( 7 − i + 1 ) − θ ∣ \left|x_{(i)}-\theta\right|+\left|x_{(7-i+1)}-\theta\right| ∣∣x(i)−θ∣∣+∣∣x(7−i+1)−θ∣∣ stay θ ∈ [ x ( i ) , x ( 7 − i + 1 ) ] \theta \in\left[x_{(i)}, x_{(7-i+1)}\right] θ∈[x(i),x(7−i+1)] Take the minimum value when ; ∣ x ( 4 ) − θ ∣ \left|x_{(4)}-\theta\right| ∣∣x(4)−θ∣∣ stay θ = x ( 4 ) \theta=x_{(4)} θ=x(4) Take the minimum value when . and ( ⋂ i = 1 3 [ x ( i ) , x ( 7 − i + 1 ) ] ) ∩ { x ( 4 ) } = { x ( 4 ) } \left(\bigcap_{i=1}^{3}\left[x_{(i)}, x_{(7-i+1)}\right]\right) \cap\left\{x_{(4)}\right\}=\left\{x_{(4)}\right\} (⋂i=13[x(i),x(7−i+1)])∩{ x(4)}={ x(4)}, therefore θ ^ = x ( 4 ) \hat{\theta}=x_{(4)} θ^=x(4) yes θ \theta θ Of MLE.
Nine 、(10 branch ) ( X 1 , X 2 ) ∼ N ( 0 , 0 ; 1 , 1 ; 0 ) , (X_1, X_2) \sim N(0,0 ; 1,1 ; 0), (X1,X2)∼N(0,0;1,1;0), seek X 1 X 2 \frac{X_1}{X_2} X2X1 Probability distribution of .
Solution:
Due to denominator X 2 X_{2} X2 The distribution of is about 0 symmetry , therefore X 1 ∣ X 2 ∣ \frac{X_{1}}{\left|X_{2}\right|} ∣X2∣X1 And X 1 X 2 \frac{X_{1}}{X_{2}} X2X1 Homodistribution , And obviously N ( 0 , 1 ) χ 2 ( 1 ) 1 \frac{N(0,1)}{\sqrt{\frac{\chi^{2}(1)}{1}}} 1χ2(1)N(0,1) It's a The degree of freedom is 1 Of t t t Distribution , therefore X 1 ∣ X 2 ∣ \frac{X_{1}}{\left|X_{2}\right|} ∣X2∣X1 Also, the degree of freedom is 1 Of t t t Distribution , Its probability density is f ( x ) = Γ ( 1 ) π Γ ( 1 2 ) ( x 2 + 1 ) − 1 = 1 π ⋅ 1 1 + x 2 , − ∞ < x < + ∞ , f(x)=\frac{\Gamma(1)}{\sqrt{\pi} \Gamma\left(\frac{1}{2}\right)}\left(x^{2}+1\right)^{-1}=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}},-\infty<x<+\infty, f(x)=πΓ(21)Γ(1)(x2+1)−1=π1⋅1+x21,−∞<x<+∞, The standard Cauchy distribution .
边栏推荐
- 受检异常和非受检异常的区别和理解
- fianl、finally、finalize三者的区别
- Application architecture of large live broadcast platform
- View UI Plus 发布 1.3.1 版本,增强 TypeScript 使用体验
- [Topic terminator]
- System design learning (I) design pastebin com (or Bit.ly)
- TYUT太原理工大学2022数据库大题之数据库操作
- (ultra detailed onenet TCP protocol access) arduino+esp8266-01s access to the Internet of things platform, upload real-time data collection /tcp transparent transmission (and how to obtain and write L
- View UI Plus 发布 1.1.0 版本,支持 SSR、支持 Nuxt、增加 TS 声明文件
- Quickly generate illustrations
猜你喜欢
2. Preliminary exercises of C language (2)
Tyut Taiyuan University of technology 2022 introduction to software engineering summary
8. C language - bit operator and displacement operator
Inheritance and polymorphism (Part 2)
2.C语言矩阵乘法
(super detailed II) detailed visualization of onenet data, how to plot with intercepted data flow
Decomposition relation model of the 2022 database of tyut Taiyuan University of Technology
4.二分查找
Caching mechanism of leveldb
TYUT太原理工大学2022数据库大题之E-R图转关系模式
随机推荐
CorelDRAW plug-in -- GMS plug-in development -- Introduction to VBA -- GMS plug-in installation -- Security -- macro Manager -- CDR plug-in (I)
Alibaba cloud microservices (II) distributed service configuration center and Nacos usage scenarios and implementation introduction
5. Function recursion exercise
2. Preliminary exercises of C language (2)
6. Function recursion
JS interview questions (I)
vector
8.C语言——位操作符与位移操作符
Cookie和Session的区别
最新坦克大战2022-全程开发笔记-3
string
(原创)制作一个采用 LCD1602 显示的电子钟,在 LCD 上显示当前的时间。显示格式为“时时:分分:秒秒”。设有 4 个功能键k1~k4,功能如下:(1)k1——进入时间修改。
(super detailed II) detailed visualization of onenet data, how to plot with intercepted data flow
Set container
IPv6 experiment
Database operation of tyut Taiyuan University of technology 2022 database
2.C语言矩阵乘法
7.数组、指针和数组的关系
【话题终结者】
Aurora system model of learning database