当前位置:网站首页>Fundamentals of face recognition (facenet)
Fundamentals of face recognition (facenet)
2022-07-02 13:05:00 【Konjaku in the east wind】
List of articles
Main ideas for reference :
- FaceNet The paper :FaceNet: A Unified Embedding for Face Recognition and Clustering
- Wu Enda video
- Keras bosses
Face verification VS Face recoginition
For face verification , We can regard it as a binary classification problem , But face recognition has developed to the present , We still use face recognition to solve .
Encoder


- We enter a picture into encoder, Through a series of Networks , Output a unique password , This string of passwords compiles this person .
- When we compare , Pass the current picture through encoder Code to get a string of passwords , Compare this string of passwords with all the passwords in the database . If f ( k e y , k e y i d a t a b a s e ) ≤ α f(key,key_{i_{database}}) \leq\alpha f(key,keyidatabase)≤α, We think this person is the person in the database .
Triplet Loss
That's the question : How do we train this network (Encoder)?

We divide the data into three groups .
( A n c h o r , P o s i t i v e , N e g a t i v e ) A n c h o r surface in I People Need to be want knowledge other Of this individual people , P o s i t i v e surface in The people Of another One Zhang chart slice , N e g a t i v e surface in another One individual people Of chart slice . (Anchor,Positive,Negative)\\ Anchor Indicates the person we need to identify ,Positive Another picture of the person \\,Negative A picture of another person . (Anchor,Positive,Negative)Anchor surface in I People Need to be want knowledge other Of this individual people ,Positive surface in The people Of another One Zhang chart slice ,Negative surface in another One individual people Of chart slice .
I People set The righteous T r i p l e t L o s s : M a x ( ∣ ∣ ( k e y A n c h o r ) − ( k e y P o s i t i v e ) ∣ ∣ − ∣ ∣ ( k e y A n c h o r ) − ( k e y N e g a t i v e ) ∣ ∣ + α , 0 ) We define Triplet Loss:\\ Max(||(key_{Anchor}) - (key_{Positive})|| -||(key_{Anchor})\\ - (key_{Negative})|| + \alpha ,0) I People set The righteous TripletLoss:Max(∣∣(keyAnchor)−(keyPositive)∣∣−∣∣(keyAnchor)−(keyNegative)∣∣+α,0)
We are optimizing Encoder When , We need different photos of the same person Encoder The compiled key The gap should be as small as possible , At the same time, I hope that the pictures of different people will be compiled key The gap should be as big as possible .
As for the neural network in the middle , You can write your own , You can even use the previous image classification VGG perhaps ConvNet.
边栏推荐
- js4day(DOM开始:获取DOM元素内容,修改元素样式,修改表单元素属性,setInterval定时器,轮播图案例)
- What data types does redis have and their application scenarios
- About the loading of layer web spring layer components, the position of the layer is centered
- 3 A VTT端接 稳压器 NCP51200MNTXG资料
- 应用LNK306GN-TL 转换器、非隔离电源
- js1day(輸入輸出語法,數據類型,數據類型轉換,var和let區別)
- 国内首款、完全自主、基于云架构的三维CAD平台——CrownCAD(皇冠CAD)
- 传感器 ADXL335BCPZ-RL7 3轴 加速度计 符合 RoHS/WEEE
- 腾讯三面:进程写文件过程中,进程崩溃了,文件数据会丢吗?
- 8A 同步降压稳压器 TPS568230RJER_规格信息
猜你喜欢

NTMFS4C05NT1G N-CH 30V 11.9A MOS管,PDF

Js1day (syntaxe d'entrée / sortie, type de données, conversion de type de données, Var et let différenciés)

Unity SKFramework框架(十九)、POI 兴趣点/信息点

线性DP AcWing 896. 最长上升子序列 II

模数转换器(ADC) ADE7913ARIZ 专为三相电能计量应用而设计
![JDBC prevent SQL injection problems and solutions [preparedstatement]](/img/32/f71f5a31cdf710704267ff100b85d7.png)
JDBC prevent SQL injection problems and solutions [preparedstatement]

Linear DP acwing 895 Longest ascending subsequence

JSON serialization and parsing

Js2day (also i++ and ++i, if statements, ternary operators, switch, while statements, for loop statements)

js1day(输入输出语法,数据类型,数据类型转换,var和let区别)
随机推荐
Linear DP acwing 895 Longest ascending subsequence
Tencent three sides: in the process of writing files, the process crashes, and will the file data be lost?
Rust语言文档精简版(上)——cargo、输出、基础语法、数据类型、所有权、结构体、枚举和模式匹配
Dijkstra AcWing 850. Dijkstra finding the shortest circuit II
Hash table acwing 840 Simulated hash table
What data types does redis have and their application scenarios
js5day(事件监听,函数赋值给变量,回调函数,环境对象this,全选反选案例,tab栏案例)
架构师必须了解的 5 种最佳软件架构模式
Typora+docsify quick start
Js6day (search, add and delete DOM nodes. Instantiation time, timestamp, timestamp cases, redrawing and reflow)
Redis sentinel mechanism and configuration
Hash table acwing 841 String hash
Mui WebView down refresh pull-up load implementation
PXE installation UOS prompt NFS over TCP not available from 10 x.x.x
JDBC prevent SQL injection problems and solutions [preparedstatement]
堆 AcWing 838. 堆排序
JS7day(事件对象,事件流,事件捕获和冒泡,阻止事件流动,事件委托,学生信息表案例)
[200 opencv routines] 100 Adaptive local noise reduction filter
[opencv learning] [moving object detection]
NTMFS4C05NT1G N-CH 30V 11.9A MOS管,PDF