当前位置:网站首页>激光slam学习记录
激光slam学习记录
2022-07-05 23:31:00 【诺有缸的高飞鸟】
写在前面
1、本文内容
激光slam学习及问题记录
2、平台
ubuntu 1804, ros
3、转载请注明出处:
https://blog.csdn.net/qq_41102371/article/details/125271212
资料
源码
loam
https://github.com/HKUST-Aerial-Robotics/A-LOAM
lego_loam
https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
livox_loam
https://github.com/hku-mars/loam_livox
ekf_loam
https://github.com/ITVRoC/ekf_loam
代表性激光SLAM算法论文与开源代码总结
https://zhuanlan.zhihu.com/p/424638140
2021 SLAM会议论文汇总
https://zhuanlan.zhihu.com/p/439932294
loam:
十二.激光SLAM框架学习之livox-loam框架安装和跑数据集https://zhuanlan.zhihu.com/p/432520314
十八.多个SLAM框架(A-LOAM、Lego-loam、LIO-SAM、livox-loam)室外测试效果粗略对比分析https://zhuanlan.zhihu.com/p/441386977
多传感器融合SLAM、导航研究和学习 https://www.zhihu.com/column/c_1372631607124353024
orb-slam和orb-slam2
http://webdiis.unizar.es/~raulmur/orbslam/
SLAM算法工程师之路:A-LOAM论文研读与框架算法学习 https://zhuanlan.zhihu.com/p/431082432
考虑到各框架里的算法原理深度、模块架构、上手调试难度等情况,笔者认为最适合基础学习与记录的算法是A-LOAM。在学习并对A-LOAM有一个较好的掌握之后,再回头研究其他的框架比较合适(这里给出一个建议学习顺序:A-LOAM-> LOAM -> LEGO-LOAM -> LIO-SAM-> LVI-SAM)。A-LOAM是由Ji Zhang博士在论文《Lidar Odometry and Mapping in Real-time》[1]中提出的,使用激光雷达高效完成自身在空间的定位与三维建图。
vscode下调试ROS项目,节点调试,多节点调试,roslauch调试
https://zhuanlan.zhihu.com/p/364972107
【ROS】 在VScode中 ROS Debug 配置方法非常详细版 https://blog.csdn.net/qq_39537898/article/details/124904363
vscode利用cmake调试 https://blog.csdn.net/code_segment/article/details/81151443
卡尔曼滤波
FAST-LIO论文知识补充—卡尔曼滤波 https://zhuanlan.zhihu.com/p/485454339
详解卡尔曼滤波原理 https://blog.csdn.net/u010720661/article/details/63253509
问题
livox_loam
运行基于MID-40雷达的LOAM_LIVOX算法的全过程 https://blog.csdn.net/weixin_48083022/article/details/119043406
需要pcl1.9以上版本
https://blog.csdn.net/weixin_48083022/article/details/119043406
Ubuntu18.04安装PCL(详细教程) https://www.guyuehome.com/10039
Ubuntu18.04安装PCL 1.9.1(图文详解,附踩坑和测试) https://blog.csdn.net/qq_42257666/article/details/124574029
编译pcl时遇到问题:
/usr/lib/x86_64-linux-gnu/libSM.so:对‘[email protected]_1.0’未定义的引用
解决:
把anaconda3/lib里面的libuuid.xxx文件先移动到其他地方
https://www.codeleading.com/article/14915214739/
https://www.jianshu.com/p/459d4242b3d0
参考
文中已列出
完
如有错漏,敬请指正
边栏推荐
- orgchart. JS organization chart, presenting structural data in an elegant way
- Rsync remote synchronization
- 同事悄悄告诉我,飞书通知还能这样玩
- There are 14 God note taking methods. Just choose one move to improve your learning and work efficiency by 100 times!
- Redis高可用——主从复制、哨兵模式、集群
- Neural structured learning - Part 2: training with natural graphs
- Mathematical formula screenshot recognition artifact mathpix unlimited use tutorial
- [Yu Yue education] NC machining technology reference materials of Shaanxi University of science and technology
- C# 反射与Type
- LeetCode——Add Binary
猜你喜欢
Initial experience | purchase and activate typora software
Brushless drive design -- on MOS drive circuit
Comparison of parameters between TVs tube and zener diode
There are 14 God note taking methods. Just choose one move to improve your learning and work efficiency by 100 times!
Neural structured learning - Part 3: training with synthesized graphs
Live tiktok shop 2022 latest gameplay card slot overseas live e-commerce new traffic
开源crm客户关系统管理系统源码,免费分享
《牛客刷verilog》Part III Verilog企业真题
成为程序员的你,后悔了吗?
The PNG image is normal when LabVIEW is opened, and the full black image is obtained when Photoshop is opened
随机推荐
Différence entre hors bande et en bande
TS type declaration
AsyncSocket长连接棒包装问题解决
Go language implementation principle -- lock implementation principle
UVA – 11637 Garbage Remembering Exam (组合+可能性)
Spire.PDF for NET 8.7.2
In C#, why can't I modify the member of a value type instance in a foreach loop?
698. Divided into k equal subsets ●●
The PNG image is normal when LabVIEW is opened, and the full black image is obtained when Photoshop is opened
Use CAS instead of synchronized
yate. conf
Rasa 3. X learning series -rasa x Community Edition (Free Edition) changes
Fiddler Everywhere 3.2.1 Crack
Spire Office 7.5.4 for NET
Part III Verilog enterprise real topic of "Niuke brush Verilog"
yate.conf
STM32__06—单通道ADC
Neural structured learning 4 antagonistic learning for image classification
Russian Foreign Ministry: Japan and South Korea's participation in the NATO summit affects security and stability in Asia
Neural structured learning - Part 3: training with synthesized graphs