当前位置:网站首页>OpenCV常用方法出处链接(持续更新)
OpenCV常用方法出处链接(持续更新)
2022-07-02 06:28:00 【Villanelle#】
1.计算矩阵差值的绝对值 cv::absdiff
应用
CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
2.利用阈值输出二值图像 cv::threshold
应用
double threshold( InputArray src, OutputArray dst,
double thresh, double maxval, int type );
3.比较图像像素值 cv::compare
应用
CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
4.分割图像前景背景 cv::grabCut
应用
CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
InputOutputArray bgdModel, InputOutputArray fgdModel,
int iterCount, int mode = GC_EVAL );
5.识别图像中一定范围的像素输出二值图 cv::inRange
应用
CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
InputArray upperb, OutputArray dst);
6.计算直方图 cv::calcHist
应用
CV_EXPORTS void calcHist( const Mat* images, int nimages,
const int* channels, InputArray mask,
OutputArray hist, int dims, const int* histSize,
const float** ranges, bool uniform = true, bool accumulate = false );
7.应用查找表 cv::LUT
应用
CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
8.反向投影直方图 cv::calcBackProject
应用
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
const int* channels, InputArray hist,
OutputArray backProject, const float** ranges,
double scale = 1, bool uniform = true );
9.均值平移算法 cv::meanShift
应用
CV_EXPORTS_W int meanShift( InputArray probImage,
CV_IN_OUT Rect& window,
TermCriteria criteria );
10.比较直方图 cv::compareHist
应用
CV_EXPORTS_W double compareHist( InputArray H1,
InputArray H2,
int method );
11.转置和翻转图像 cv::transpose
cv::flip
应用
CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
12.自适应阈值化 cv::adaptiveThreshold
应用
CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
double maxValue, int adaptiveMethod,
int thresholdType, int blockSize, double C );
13.生成积分图像 cv::integral
应用
CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 );
14.腐蚀和膨胀图像 cv::erode
cv::dilate
应用
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
Point anchor = Point(-1,-1), int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue() );
CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
Point anchor = Point(-1,-1), int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue() );
15.开启和闭合图像 cv::morphologyEx
应用
CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
int op, InputArray kernel,
Point anchor = Point(-1,-1), int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue() );
16.分水岭函数 cv::watershed
应用
CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
17.拷贝/变换图像 GpuMat::convertTo
应用
void GpuMat::convertTo(OutputArray dst, int rtype,
double alpha, double beta) const
18.块滤波器和高斯滤波器 cv::blur
cv::GaussianBlur
应用
CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
Size ksize, Point anchor = Point(-1,-1),
int borderType = BORDER_DEFAULT );
CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
double sigmaX, double sigmaY = 0,
int borderType = BORDER_DEFAULT );
19.二维自定义内核滤波器 cv::filter2D
应用
CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
InputArray kernel, Point anchor = Point(-1,-1),
double delta = 0, int borderType = BORDER_DEFAULT );
20.图像缩减和放大 cv::pyrDown
cv::pyrUp
cv::resize
应用
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
Size dsize, double fx = 0, double fy = 0,
int interpolation = INTER_LINEAR );
21.中值滤波器 cv::medianBlur
应用
CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
边栏推荐
- 【MnasNet】《MnasNet:Platform-Aware Neural Architecture Search for Mobile》
- 【Cutout】《Improved Regularization of Convolutional Neural Networks with Cutout》
- C语言实现XML生成解析库(XML扩展)
- Open3d learning notes 1 [first glimpse, file reading]
- open3d学习笔记五【RGBD融合】
- JVM instructions
- 针对tqdm和print的顺序问题
- 乐理基础(简述)
- Open3d learning note 4 [surface reconstruction]
- (15) Flick custom source
猜你喜欢
CVPR19-Deep Stacked Hierarchical Multi-patch Network for Image Deblurring论文复现
用全连接层替代掉卷积 -- RepMLP
Command line is too long
On the back door of deep learning model
联邦学习下的数据逆向攻击 -- GradInversion
【MobileNet V3】《Searching for MobileNetV3》
针对语义分割的真实世界的对抗样本攻击
Simply test the two different data transmission methods of content length and chunked
【双目视觉】双目立体匹配
[Sparse to Dense] Sparse to Dense: Depth Prediction from Sparse Depth samples and a Single Image
随机推荐
Global and Chinese market of tillage finishing machines 2022-2028: Research Report on technology, participants, trends, market size and share
Data reverse attack under federated learning -- gradinversion
包图画法注意规范
王-课外单词
Principes fondamentaux de la théorie musicale (brève introduction)
【MagNet】《Progressive Semantic Segmentation》
w10升级至W11系统,黑屏但鼠标与桌面快捷方式能用,如何解决
Media query usage
【Cascade FPD】《Deep Convolutional Network Cascade for Facial Point Detection》
Command line is too long
EKLAVYA -- 利用神经网络推断二进制文件中函数的参数
Business architecture diagram
【Cutout】《Improved Regularization of Convolutional Neural Networks with Cutout》
【MobileNet V3】《Searching for MobileNetV3》
MySQL优化
用MLP代替掉Self-Attention
[learning notes] matlab self compiled image convolution function
使用C#语言来进行json串的接收
Global and Chinese markets for conventional rubber track 2022-2028: Research Report on technology, participants, trends, market size and share
Target detection for long tail distribution -- balanced group softmax