当前位置:网站首页>jetson nano安装tensorflow踩坑记录(scipy1.4.1)
jetson nano安装tensorflow踩坑记录(scipy1.4.1)
2022-07-02 06:26:00 【寂云萧】
一、scipy1.4.1无法安装
我的jetpack版本是4.4,安装的是tensorflow2.3。然而无论是2.2还是2.3,其中都需要安装scripy1.4.1版本的,别的版本还不行,为了这个我折腾了一整天都没安装上。
使用pip安装,还用过apt-get的方式安装,但是都不管用,后来按照这篇文章安装了依赖包。
文章:https://blog.csdn.net/qq_33475105/article/details/109555099
最后还是不行。报错如下:
后来又去查了官网,才知道原来已经不支持安装1.4.1了,掀桌!!!
所以无论是清华的镜像源还是官方源,都已经不能直接用pip去安装了!
后来才在CSDN这边找到了大佬发的文件,最终才解决了这个问题。
链接:https://blog.csdn.net/weixin_43220532/article/details/109156240
我下载了之后也上传了蓝奏云:https://yjz.lanzous.com/isUx2mustze
二、h5py安装出错
错误日志:
首先要确保Cpython安装好
Cpython要先独立安装完,然后是与h5py有关的依赖包。
(注:如果不切换国内源,而是坚持使用官方源的话会出现很多软件无法安装的情况。)
sudo apt-get install libhdf5-serial-dev hdf5-tools libhdf5-dev zlib1g-dev zip libjpeg8-dev liblapack-dev libblas-dev gfortran
pip3 install -U pip
pip3 install -U CPython testresources setuptools
pip3 install -U numpy==1.16.1 future==0.17.1 mock==3.0.5 h5py==2.9.0 keras_preprocessing==1.0.5 keras_applications==1.0.8 gast==0.2.2 futures protobuf pybind11
建议用国内源,否则安装会非常的慢:
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy==1.16.1 future==0.17.1 mock==3.0.5 h5py==2.9.0 keras_preprocessing==1.0.5 keras_applications==1.0.8 gast==0.2.2 futures protobuf pybind11
边栏推荐
- [paper introduction] r-drop: regulated dropout for neural networks
- Network metering - transport layer
- CPU的寄存器
- Translation of the paper "written mathematical expression recognition with bidirectionally trained transformer"
- CONDA creates, replicates, and shares virtual environments
- Machine learning theory learning: perceptron
- CONDA common commands
- 【Sparse-to-Dense】《Sparse-to-Dense:Depth Prediction from Sparse Depth Samples and a Single Image》
- [torch] the most concise logging User Guide
- Generate random 6-bit invitation code in PHP
猜你喜欢

PointNet理解(PointNet实现第4步)

图片数据爬取工具Image-Downloader的安装和使用

Faster-ILOD、maskrcnn_ Benchmark training coco data set and problem summary

mmdetection训练自己的数据集--CVAT标注文件导出coco格式及相关操作

Faster-ILOD、maskrcnn_benchmark训练coco数据集及问题汇总

【Wing Loss】《Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks》
![[introduction to information retrieval] Chapter 7 scoring calculation in search system](/img/cc/a5437cd36956e4c239889114b783c4.png)
[introduction to information retrieval] Chapter 7 scoring calculation in search system

【Cascade FPD】《Deep Convolutional Network Cascade for Facial Point Detection》

【MagNet】《Progressive Semantic Segmentation》

ModuleNotFoundError: No module named ‘pytest‘
随机推荐
TimeCLR: A self-supervised contrastive learning framework for univariate time series representation
Faster-ILOD、maskrcnn_ Benchmark training coco data set and problem summary
Faster-ILOD、maskrcnn_ Benchmark installation process and problems encountered
Execution of procedures
Generate random 6-bit invitation code in PHP
Using compose to realize visible scrollbar
Proof and understanding of pointnet principle
解决latex图片浮动的问题
Apple added the first iPad with lightning interface to the list of retro products
CONDA creates, replicates, and shares virtual environments
Drawing mechanism of view (3)
【双目视觉】双目立体匹配
【Mixed Pooling】《Mixed Pooling for Convolutional Neural Networks》
Calculate the difference in days, months, and years between two dates in PHP
Memory model of program
ModuleNotFoundError: No module named ‘pytest‘
parser. parse_ Args boolean type resolves false to true
Handwritten call, apply, bind
聊天中文语料库对比(附上各资源链接)
【TCDCN】《Facial landmark detection by deep multi-task learning》