当前位置:网站首页>全球KYC服务商ADVANCE.AI 活体检测产品通过ISO国际安全认证 产品能力再上一新台阶
全球KYC服务商ADVANCE.AI 活体检测产品通过ISO国际安全认证 产品能力再上一新台阶
2022-07-03 09:01:00 【科技那些事儿】
近期,在全球KYC服务商ADVANCE.AI发布的资讯中得知,它旗下研发的活体检测产品成功通过了iBeta PAD测试(Presentation Attack Detection,活体冒用攻击),符合ISO(国际标准化组织) 30107-3标准,而且ADVANCE.AI在东南亚目前还是第一家通过了此项认证的金融科技公司,这不仅是对ADVANCE.AI强劲的创新能力的充分认可,也是对公司坚持自主研发的肯定。

ISO 30107-3标准定义了生物信息技术功能安全性的相关准则,是国际公认最严格的技术安全性认证之一,由ISO委托第三方权威机构iBeta对申报的活体验证产品进行标准化测试。ADVANCE.AI活体检测产品通过此项测试,也就意味着它产品的识别准确率、反欺诈等相关技术指标已经符合全球最严认证标准的考验。
据悉,全球KYC服务商ADVANCE.AI人脸识别解决方案能够根据客户业务需要,低成本、快速地赋予客户毫秒级人脸识别、数字身份验证能力,现已广泛应用于共享经济、旅游出行、跨境电商等各行各业的场景中。

ADVANCE.AI 产品负责人周洪丞表示,活体防伪是现如今人脸识别技术的最大挑战之一,特别是对用户数字身份验证有着极高要求的金融场景,通过iBeta的活体冒用攻击测试,意味着ADVANCE.AI 活体检测产品的技术实力已经达到了全球领先水平。
数据是数字经济的战略资源,互联网企业大量收集用户隐私数据,由此引发的大数据杀熟定价和网络诈骗等诸多问题,严重阻碍数字经济的持续健康发展。ADVANCE.AI 耕耘人工智能行业多年,在全面了解市场需求的基础上,坚持不懈地专注于研发,利用自主研发的计算机视觉和自然语言处理技术,推动数字身份认证产品的发展。

在未来,ADVANCE.AI 仍将继续加大对产品研发的投入,继续聚焦主责主业,坚持创新引领,不断用技术赋能智能制造,竭力为用户提供更加安全可靠的产品和服务,努力成长为推动行业发展的“巨人”企业。
边栏推荐
- State compression DP acwing 91 Shortest Hamilton path
- Common formulas of probability theory
- [point cloud processing paper crazy reading classic version 7] - dynamic edge conditioned filters in revolutionary neural networks on Graphs
- Usage of pandas to obtain MySQL data
- Filter comments to filter out uncommented and default values
- 【点云处理之论文狂读经典版10】—— PointCNN: Convolution On X-Transformed Points
- Win10 quick screenshot
- 【点云处理之论文狂读前沿版8】—— Pointview-GCN: 3D Shape Classification With Multi-View Point Clouds
- Detailed steps of windows installation redis
- Digital management medium + low code, jnpf opens a new engine for enterprise digital transformation
猜你喜欢

Beego learning - Tencent cloud upload pictures

Spark cluster installation and deployment

Utilisation de hudi dans idea

Spark 集群安装与部署

Pic16f648a-e/ss PIC16 8-bit microcontroller, 7KB (4kx14)

Crawler career from scratch (II): crawl the photos of my little sister ② (the website has been disabled)

Digital statistics DP acwing 338 Counting problem

【点云处理之论文狂读前沿版11】—— Unsupervised Point Cloud Pre-training via Occlusion Completion

【点云处理之论文狂读经典版12】—— FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation
![[point cloud processing paper crazy reading classic version 7] - dynamic edge conditioned filters in revolutionary neural networks on Graphs](/img/0a/480f1d1eea6f2ecf84fd5aa96bd9fb.png)
[point cloud processing paper crazy reading classic version 7] - dynamic edge conditioned filters in revolutionary neural networks on Graphs
随机推荐
[point cloud processing paper crazy reading frontier version 8] - pointview gcn: 3D shape classification with multi view point clouds
Spark 结构化流写入Hudi 实践
Usage of pandas to obtain MySQL data
State compression DP acwing 91 Shortest Hamilton path
[kotlin learning] control flow of higher-order functions -- lambda return statements and anonymous functions
LeetCode每日一题(1024. Video Stitching)
Flask+supervisor installation realizes background process resident
2022-2-13 learning the imitation Niuke project - home page of the development community
【点云处理之论文狂读前沿版11】—— Unsupervised Point Cloud Pre-training via Occlusion Completion
Spark cluster installation and deployment
[kotlin learning] classes, objects and interfaces - classes with non default construction methods or attributes, data classes and class delegates, object keywords
Windows安装Redis详细步骤
[point cloud processing paper crazy reading classic version 11] - mining point cloud local structures by kernel correlation and graph pooling
LeetCode每日一题(931. Minimum Falling Path Sum)
Flink学习笔记(十一)Table API 和 SQL
Digital statistics DP acwing 338 Counting problem
Jenkins learning (I) -- Jenkins installation
【毕业季|进击的技术er】又到一年毕业季,一毕业就转行,从动物科学到程序员,10年程序员有话说
Word segmentation in full-text indexing
Go language - IO project