当前位置:网站首页>Machine learning Seaborn visualization
Machine learning Seaborn visualization
2022-07-05 07:14:00 【RS&Hydrology】
Main records seaborn Visual learning notes ( Understand which functions to draw images are available ).
List of articles
- One 、seaborn principle
- Two 、 Variable distribution
- 1.sns.boxplot(): View the value range of numeric variables
- 2.sns.displot(): View the distribution of variables
- 3.sns.jointplot(): Plot the joint distribution and respective distribution of two variables
- 4.sns.pairplot(): Plot the joint distribution of all numerical variables in pairs
- Reference material
One 、seaborn principle

picture source :https://www.bilibili.com/video/BV1VX4y1F76x/
- boxenplot: Suitable for big data
- Distribution diagram of numerical variables in different categories :stripplot;swarmplot;violinplot
- FaceGrid,PairGrid You can customize the drawing function
see seaborn edition :sns.__version__
Version update :pip install —upgrade seaborn
Two 、 Variable distribution
1.sns.boxplot(): View the value range of numeric variables
sns.boxplot(): View the value range of numeric variables , Whether there are outliers .
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
print(sns.__version__)
# print(sns.get_dataset_names())
df = pd.read_excel('D:/1.xlsx')
sns.boxplot(data=df,x="Height")
plt.show()

2.sns.displot(): View the distribution of variables
- sns.displot(kind = hist) # Draw histogram
Histogram :sns.histplot(bins,hue,shrink)
bins: change bin numbers
hue: Category variable
shrink: Zoom factor - sns.displot(kind = kde) # Plotting kernel density estimates (kernel density estimate (KDE)), It is a method to visualize the distribution of observations in data sets , Similar to histogram .KDE Use a continuous probability density curve of one or more dimensions to represent data .
- sns.displot(kind = ecdf) # Represents the proportion or count of observations below each unique value in the dataset . Compare with histogram or density diagram , Its advantage is that each observation is directly visualized , This means that there is no need to adjust the box dividing or smoothing parameters .
penguins = sns.load_dataset("penguins")
sns.ecdfplot(data=penguins, x="flipper_length_mm")

- sns.countplot(data=df,x=“class”) Number of Statistics
3.sns.jointplot(): Plot the joint distribution and respective distribution of two variables
sns.jointplot(dataset,x,y,kind)
sns.jointplot() Function upgrade :
JoinGrid, Can pass g.plot() Custom function .g = sns.JoinGrid(); g.plot(sns.histplot,sns.boxplot)
4.sns.pairplot(): Plot the joint distribution of all numerical variables in pairs
sns.pairplot() Function upgrade :
PairGrid, Can pass g.map() Custom drawing function
Reference material
边栏推荐
- 2022年中纪实 -- 一个普通人的经历
- C#学习笔记
- Ethtool principle introduction and troubleshooting ideas for network card packet loss (with ethtool source code download)
- ROS2——Service服务(九)
- C learning notes
- Interpretation of the earliest sketches - image translation work sketchygan
- [node] differences among NPM, yarn and pnpm
- Ros2 - common command line (IV)
- ROS2——topic话题(八)
- ROS2——初识ROS2(一)
猜你喜欢

The problem of configuring opencv in qt5.13.2 is solved in detail

PHY驱动调试之 --- PHY控制器驱动(二)

Ros2 - workspace (V)

Ret2xx---- common CTF template proposition in PWN

数学分析_笔记_第8章:重积分
![[vscode] prohibit the pylance plug-in from automatically adding import](/img/a7/d96c0c4739ff68356c15bafbbb1328.jpg)
[vscode] prohibit the pylance plug-in from automatically adding import

逻辑结构与物理结构

SOC_SD_CMD_FSM

Build a microservice cluster environment locally and learn to deploy automatically

M2dgr slam data set of multi-source and multi scene ground robot
随机推荐
数学分析_笔记_第8章:重积分
SOC_ SD_ DATA_ FSM
1290_FreeRTOS中prvTaskIsTaskSuspended()接口实现分析
Negative number storage and type conversion in programs
What is soda?
ROS2——topic话题(八)
Import CV2, prompt importerror: libcblas so. 3: cannot open shared object file: No such file or directory
ImportError: No module named ‘Tkinter‘
Intelligent target detection 59 -- detailed explanation of pytoch focal loss and its implementation in yolov4
GPIO port bit based on Cortex-M3 and M4 with operation macro definition (can be used for bus input and output, STM32, aducm4050, etc.)
Raspberry pie 4B arm platform aarch64 PIP installation pytorch
PHY drive commissioning --- mdio/mdc interface Clause 22 and 45 (I)
NPM and package common commands
[tf1] save and load parameters
testing framework
Three body goal management notes
C语言数组专题训练
并发编程 — 如何中断/停止一个运行中的线程?
【软件测试】02 -- 软件缺陷管理
Oracle code use