当前位置:网站首页>Machine learning Seaborn visualization
Machine learning Seaborn visualization
2022-07-05 07:14:00 【RS&Hydrology】
Main records seaborn Visual learning notes ( Understand which functions to draw images are available ).
List of articles
- One 、seaborn principle
- Two 、 Variable distribution
- 1.sns.boxplot(): View the value range of numeric variables
- 2.sns.displot(): View the distribution of variables
- 3.sns.jointplot(): Plot the joint distribution and respective distribution of two variables
- 4.sns.pairplot(): Plot the joint distribution of all numerical variables in pairs
- Reference material
One 、seaborn principle
picture source :https://www.bilibili.com/video/BV1VX4y1F76x/
- boxenplot: Suitable for big data
- Distribution diagram of numerical variables in different categories :stripplot;swarmplot;violinplot
- FaceGrid,PairGrid You can customize the drawing function
see seaborn edition :sns.__version__
Version update :pip install —upgrade seaborn
Two 、 Variable distribution
1.sns.boxplot(): View the value range of numeric variables
sns.boxplot(): View the value range of numeric variables , Whether there are outliers .
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
print(sns.__version__)
# print(sns.get_dataset_names())
df = pd.read_excel('D:/1.xlsx')
sns.boxplot(data=df,x="Height")
plt.show()
2.sns.displot(): View the distribution of variables
- sns.displot(kind = hist) # Draw histogram
Histogram :sns.histplot(bins,hue,shrink)
bins: change bin numbers
hue: Category variable
shrink: Zoom factor - sns.displot(kind = kde) # Plotting kernel density estimates (kernel density estimate (KDE)), It is a method to visualize the distribution of observations in data sets , Similar to histogram .KDE Use a continuous probability density curve of one or more dimensions to represent data .
- sns.displot(kind = ecdf) # Represents the proportion or count of observations below each unique value in the dataset . Compare with histogram or density diagram , Its advantage is that each observation is directly visualized , This means that there is no need to adjust the box dividing or smoothing parameters .
penguins = sns.load_dataset("penguins")
sns.ecdfplot(data=penguins, x="flipper_length_mm")
- sns.countplot(data=df,x=“class”) Number of Statistics
3.sns.jointplot(): Plot the joint distribution and respective distribution of two variables
sns.jointplot(dataset,x,y,kind)
sns.jointplot() Function upgrade :
JoinGrid, Can pass g.plot() Custom function .g = sns.JoinGrid(); g.plot(sns.histplot,sns.boxplot)
4.sns.pairplot(): Plot the joint distribution of all numerical variables in pairs
sns.pairplot() Function upgrade :
PairGrid, Can pass g.map() Custom drawing function
Reference material
边栏推荐
- 【Node】npm、yarn、pnpm 区别
- Jenkins reported an error. Illegal character: '\ufeff'. Class, interface or enum are required
- The problem of configuring opencv in qt5.13.2 is solved in detail
- 【无标题】
- mingling
- ROS2——ROS2对比ROS1(二)
- SD_ CMD_ SEND_ SHIFT_ REGISTER
- [node] NVM version management tool
- About vscode, "code unreachable" will be displayed when calling sendline series functions with pwntools“
- [node] differences among NPM, yarn and pnpm
猜你喜欢
随机推荐
C learning notes
能量守恒和打造能量缺口
Three body goal management notes
Executealways of unity is replacing executeineditmode
一文揭开,测试外包公司的真实情况
PHY drive commissioning --- mdio/mdc interface Clause 22 and 45 (I)
Use of Pai platform
Solve tensorfow GPU modulenotfounderror: no module named 'tensorflow_ core. estimator‘
Unity 之 ExecuteAlways正在取代ExecuteInEditMode
网易To B,柔外刚中
[software testing] 05 -- principles of software testing
Now there are HTML files and MVC made with vs (connected to the database). How can they be connected?
Netease to B, soft outside, hard in
Qu'est - ce que l'hydroxyde de sodium?
IPage can display data normally, but total is always equal to 0
【idea】Could not autowire. No beans of xxx type found
Brief description of inux camera (Mipi interface)
氢氧化钠是什么?
你心目中的数据分析 Top 1 选 Pandas 还是选 SQL?
ROS2——topic话题(八)