当前位置:网站首页>Machine learning Seaborn visualization
Machine learning Seaborn visualization
2022-07-05 07:14:00 【RS&Hydrology】
Main records seaborn Visual learning notes ( Understand which functions to draw images are available ).
List of articles
- One 、seaborn principle
- Two 、 Variable distribution
- 1.sns.boxplot(): View the value range of numeric variables
- 2.sns.displot(): View the distribution of variables
- 3.sns.jointplot(): Plot the joint distribution and respective distribution of two variables
- 4.sns.pairplot(): Plot the joint distribution of all numerical variables in pairs
- Reference material
One 、seaborn principle

picture source :https://www.bilibili.com/video/BV1VX4y1F76x/
- boxenplot: Suitable for big data
- Distribution diagram of numerical variables in different categories :stripplot;swarmplot;violinplot
- FaceGrid,PairGrid You can customize the drawing function
see seaborn edition :sns.__version__
Version update :pip install —upgrade seaborn
Two 、 Variable distribution
1.sns.boxplot(): View the value range of numeric variables
sns.boxplot(): View the value range of numeric variables , Whether there are outliers .
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
print(sns.__version__)
# print(sns.get_dataset_names())
df = pd.read_excel('D:/1.xlsx')
sns.boxplot(data=df,x="Height")
plt.show()

2.sns.displot(): View the distribution of variables
- sns.displot(kind = hist) # Draw histogram
Histogram :sns.histplot(bins,hue,shrink)
bins: change bin numbers
hue: Category variable
shrink: Zoom factor - sns.displot(kind = kde) # Plotting kernel density estimates (kernel density estimate (KDE)), It is a method to visualize the distribution of observations in data sets , Similar to histogram .KDE Use a continuous probability density curve of one or more dimensions to represent data .
- sns.displot(kind = ecdf) # Represents the proportion or count of observations below each unique value in the dataset . Compare with histogram or density diagram , Its advantage is that each observation is directly visualized , This means that there is no need to adjust the box dividing or smoothing parameters .
penguins = sns.load_dataset("penguins")
sns.ecdfplot(data=penguins, x="flipper_length_mm")

- sns.countplot(data=df,x=“class”) Number of Statistics
3.sns.jointplot(): Plot the joint distribution and respective distribution of two variables
sns.jointplot(dataset,x,y,kind)
sns.jointplot() Function upgrade :
JoinGrid, Can pass g.plot() Custom function .g = sns.JoinGrid(); g.plot(sns.histplot,sns.boxplot)
4.sns.pairplot(): Plot the joint distribution of all numerical variables in pairs
sns.pairplot() Function upgrade :
PairGrid, Can pass g.map() Custom drawing function
Reference material
边栏推荐
- Literacy Ethernet MII interface types Daquan MII, RMII, smii, gmii, rgmii, sgmii, XGMII, XAUI, rxaui
- GPIO port bit based on Cortex-M3 and M4 with operation macro definition (can be used for bus input and output, STM32, aducm4050, etc.)
- ROS2——常用命令行(四)
- The difference between NPM install -g/-save/-save-dev
- Oracle code use
- Docker installs MySQL and uses Navicat to connect
- 并发编程 — 死锁排查及处理
- Spinningup drawing curve
- Ros2 - install ros2 (III)
- 1290_ Implementation analysis of prvtaskistasksuspended() interface in FreeRTOS
猜你喜欢
随机推荐
第 2 章:小试牛刀,实现一个简单的Bean容器
[OBS] x264 Code: "buffer_size“
氢氧化钠是什么?
摄像头的MIPI接口、DVP接口和CSI接口
D2L installation
The SQL implementation has multiple records with the same ID, and the latest one is taken
Lexin interview process
Error: "mountvolume.setup failed for volume PVC fault handling
现在有html文件,和用vs制作的mvc(连接了数据库),怎么两个相连?
PHY驱动调试之 --- PHY控制器驱动(二)
[node] differences among NPM, yarn and pnpm
IPage can display data normally, but total is always equal to 0
PowerManagerService(一)— 初始化
Use of Pai platform
Database SQL practice 3. Find the current salary details of the current leaders of each department and their corresponding department number Dept_ no
[node] NVM version management tool
ROS2——安装ROS2(三)
The differences and connections among cookies, sessions, JWT, and tokens
小米笔试真题一
[tf1] save and load parameters



![[software testing] 03 -- overview of software testing](/img/1e/0b6458160e34e43f021ea4797de70a.jpg)





