当前位置:网站首页>Input of mathematical formula of obsidan
Input of mathematical formula of obsidan
2022-07-07 08:28:00 【Liusui Jinsha】
Preface :
Recently, I am studying advanced mathematics of upgraded college , Want to continue using Obsidian As a note taking software , But I don't know how to input mathematical formulas , Hence this article
LaTex The grammar of
Be careful : The mathematical formulas here should be in $ Here $, perhaps $$ Here $$
First, let's talk about how to change careers
$$
\begin{aligned}a=b+c\\b=c-a\\c=a+b \end{aligned}
$$
a = b + c b = c − a c = a + b \begin{aligned}a=b+c\\b=c-a\\c=a+b \end{aligned} a=b+cb=c−ac=a+b
$$
\begin{matrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{matrix}
$$
has know y = x + 3 ( x > = 0 ) seek y Of most Big value yes many Less \begin{matrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{matrix} has know y=x+3 seek y Of most Big value yes many Less (x>=0)
$$
\begin{bmatrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{bmatrix}
$$
[ has know y = x + 3 ( x > = 0 ) seek y Of most Big value yes many Less ] \begin{bmatrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{bmatrix} [ has know y=x+3 seek y Of most Big value yes many Less (x>=0)]
$$
\begin{Bmatrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{Bmatrix}
$$
{ has know y = x + 3 ( x > = 0 ) seek y Of most Big value yes many Less } \begin{Bmatrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{Bmatrix} { has know y=x+3 seek y Of most Big value yes many Less (x>=0)}
$$
\begin{vmatrix}
0&1&2\\
3&4&5\\
6&7&8\\
\end{vmatrix}
$$
∣ 0 1 2 3 4 5 6 7 8 ∣ \begin{vmatrix} 0&1&2\\ 3&4&5\\ 6&7&8\\ \end{vmatrix} ∣∣∣∣∣∣036147258∣∣∣∣∣∣
$$
\begin{Vmatrix}
0&1&2\\
3&4&5\\
6&7&8\\
\end{Vmatrix}
$$
∥ 0 1 2 3 4 5 6 7 8 ∥ \begin{Vmatrix} 0&1&2\\ 3&4&5\\ 6&7&8\\ \end{Vmatrix} ∥∥∥∥∥∥036147258∥∥∥∥∥∥
- The Greek letter
α \alpha α、 β \beta β、 χ \chi χ、 Δ \Delta Δ、 Γ \Gamma Γ、 Θ \Theta Θ And so on.

- Some mathematical structures

- The effect is as follows :
$\frac{123}{999}$、$\sqrt[n]{abc}$、$\frac{\sqrt{234}}{\sqrt[n]{abc}}$、$\underrightarrow{abc}$、$\overrightarrow{abc}$
123 999 \frac{123}{999} 999123、 a b c n \sqrt[n]{abc} nabc、 234 a b c n \frac{\sqrt{234}}{\sqrt[n]{abc}} nabc234、 a b c → \underrightarrow{abc} abc、 a b c → \overrightarrow{abc} abc
- Insert delimiter

- The effect is as follows
$|$、$\|$、$\Uparrow$、$\{\}$
∣ | ∣、 ∥ \| ∥、 ⇑ \Uparrow ⇑、 { } \{\} { }
- Insert some variable size symbols

The effect is as follows :
$\sum$、$\int$、$\oint$、$\iint$、$\bigcap\bigcup\bigoplus\bigotimes$
∑ \sum ∑、 ∫ \int ∫、 ∮ \oint ∮、 ∬ \iint ∬、 ⋂ ⋃ ⨁ ⨂ \bigcap\bigcup\bigoplus\bigotimes ⋂⋃⨁⨂
- Insert some function names

The effect is as follows :
$\sin$、$\cos$、$\tan$、$\log$、 $\tan(at-n\pi)$
sin \sin sin、 cos \cos cos、 tan \tan tan、 log \log log、 tan ( a t − n π ) \tan(at-n\pi) tan(at−nπ)
- Relational operators and binary operators

The effect is as follows :
$\times$、$\ast$、$\div$、$\pm$、$\leq$、$\geq$、$\neq$、$\thickapprox$、$\sqsupset$、$\subset$、$\supseteq$、$\sqsupset$、$\sqsupseteq$、$\in$
× \times ×、 ∗ \ast ∗、 ÷ \div ÷、 ± \pm ±、 ≤ \leq ≤、 ≥ \geq ≥、 ≠ \neq =、 ≈ \thickapprox ≈、 ⊐ \sqsupset ⊐、 ⊂ \subset ⊂、 ⊇ \supseteq ⊇、 ⊐ \sqsupset ⊐、 ⊒ \sqsupseteq ⊒、 ∈ \in ∈
- Insert arrow symbol

The effect is as follows :
$\leftarrow$、$\Leftarrow$、$\nLeftarrow$、$\rightleftarrows$
← \leftarrow ←、 ⇐ \Leftarrow ⇐、 ⇍ \nLeftarrow ⇍、 ⇄ \rightleftarrows ⇄
- Other symbols

- The effect is as follows
$\infty$、$\angle$、$\int$、$\triangle$、$\square$
∞ \infty ∞、 ∠ \angle ∠、 ∫ \int ∫、 △ \triangle △、 □ \square □
- Insert superscript and subscript
use ^ Means superscript , use _ Indicates the lower mark
The effect is as follows :
sin 2 ( θ ) + cos 2 ( θ ) = 1 \sin^2(\theta) + \cos^2(\theta) = 1 sin2(θ)+cos2(θ)=1
∑ n = 1 ∞ k \sum_{n=1}^\infty k n=1∑∞k
∫ a b f ( x ) d x \int_a^bf(x)\,dx ∫abf(x)dx
lim x → ∞ exp ( − x ) = 0 \lim\limits_{x\to\infty}\exp(-x) = 0 x→∞limexp(−x)=0
Be careful :
\,The function in the integral is to increase the distance ,\!Will reduce some spacing .Output piecewise function
use\begin{cases}and\end{cases}To construct piecewise functions , In the middle\\Let's break it up
f ( x ) = { 2 x , x > 0 3 x , x ≤ 0 f(x) = \begin{cases} 2x,\,\,x>0\\ 3x,\,\,x\le0\\ \end{cases} f(x)={ 2x,x>03x,x≤0
- Some common mathematical formulas
$$
f'(x) = x^2 + x
$$
f ′ ( x ) = x 2 + x f'(x) = x^2 + x f′(x)=x2+x
$$
\lim_{x\to0}\frac{9x^5+7x^3}{x^2+6x^8}
$$
lim x → 0 9 x 5 + 7 x 3 x 2 + 6 x 8 \lim_{x\to0}\frac{9x^5+7x^3}{x^2+6x^8} x→0limx2+6x89x5+7x3
$$
\int_a^b f(x)\,dx
$$
∫ a b f ( x ) d x \int_a^b f(x)\,dx ∫abf(x)dx
$$
\int_0^{+\infty}f(x)\,dx
$$
∫ 0 + ∞ f ( x ) d x \int_0^{+\infty}f(x)\,dx ∫0+∞f(x)dx
$$
\int_{x^2+y^2\leq R^2} \,f(x,y)\,dx\,dy = \int_{\theta=0}^{2\pi}\int_{r=0}^R \,f(r\cos\theta,r\sin\theta)\,r\,dr\,d\theta
$$
∫ x 2 + y 2 ≤ R 2 f ( x , y ) d x d y = ∫ θ = 0 2 π ∫ r = 0 R f ( r cos θ , r sin θ ) r d r d θ \int_{x^2+y^2\leq R^2} \,f(x,y)\,dx\,dy = \int_{\theta=0}^{2\pi}\int_{r=0}^R \,f(r\cos\theta,r\sin\theta)\,r\,dr\,d\theta ∫x2+y2≤R2f(x,y)dxdy=∫θ=02π∫r=0Rf(rcosθ,rsinθ)rdrdθ
$$
\int\!\!\!\int_D f(x,y)dxdy
$$
∫ ∫ D f ( x , y ) d x d y \int\!\!\!\int_D f(x,y)dxdy ∫∫Df(x,y)dxdy
Reference resources :
https://zhuanlan.zhihu.com/p/158156773
边栏推荐
- iptables 之 state模块(ftp服务练习)
- [go ~ 0 to 1] obtain timestamp, time comparison, time format conversion, sleep and timer on the seventh day
- Caractéristiques de bisenet
- [quick start of Digital IC Verification] 13. SystemVerilog interface and program learning
- Leetcode 187 Repeated DNA sequence (2022.07.06)
- 利用 Helm 在各类 Kubernetes 中安装 Rainbond
- 漏洞复现-easy_tornado
- Practice of combining rook CEPH and rainbow, a cloud native storage solution
- opencv学习笔记一——读取图像的几种方法
- Use of out covariance and in inversion in kotlin
猜你喜欢

opencv学习笔记三——图像平滑/去噪处理

2-3查找樹

Splunk中single value视图使用将数值替换为文字
![[quick start of Digital IC Verification] 12. Introduction to SystemVerilog testbench (svtb)](/img/dc/a809f2ec5f9e85a02e68c88bdcdb5e.png)
[quick start of Digital IC Verification] 12. Introduction to SystemVerilog testbench (svtb)

BiSeNet的特点

Rainbow combines neuvector to practice container safety management

Opencv learning notes II - basic image operations

Splunk query CSV lookup table data dynamic query

一种适用于应用频繁测试下快速查看Pod的日志的方法(grep awk xargs kuberctl)

解析机器人科技发展观对社会研究论
随机推荐
opencv学习笔记四——膨胀/腐蚀/开运算/闭运算
漏洞複現-Fastjson 反序列化
Implement your own dataset using bisenet
Leetcode 187 Repeated DNA sequence (2022.07.06)
Lua 编程学习笔记
iptables 之 state模块(ftp服务练习)
2-3 lookup tree
Rsync remote synchronization
Using nocalhost to develop microservice application on rainbow
Ebpf cilium practice (1) - team based network isolation
JS copy picture to clipboard read clipboard
A method for quickly viewing pod logs under frequent tests (grep awk xargs kuberctl)
利用 Helm 在各类 Kubernetes 中安装 Rainbond
使用SwinUnet训练自己的数据集
Rainbond 5.7.1 支持对接多家公有云和集群异常报警
Bisenet features
Qinglong panel - today's headlines
eBPF Cilium实战(1) - 基于团队的网络隔离
Qinglong panel -- finishing usable scripts
CCTV is so warm-hearted that it teaches you to write HR's favorite resume hand in hand