当前位置:网站首页>Input of mathematical formula of obsidan
Input of mathematical formula of obsidan
2022-07-07 08:28:00 【Liusui Jinsha】
Preface :
Recently, I am studying advanced mathematics of upgraded college , Want to continue using Obsidian As a note taking software , But I don't know how to input mathematical formulas , Hence this article
LaTex The grammar of
Be careful : The mathematical formulas here should be in $ Here $, perhaps $$ Here $$
First, let's talk about how to change careers
$$
\begin{aligned}a=b+c\\b=c-a\\c=a+b \end{aligned}
$$
a = b + c b = c − a c = a + b \begin{aligned}a=b+c\\b=c-a\\c=a+b \end{aligned} a=b+cb=c−ac=a+b
$$
\begin{matrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{matrix}
$$
has know y = x + 3 ( x > = 0 ) seek y Of most Big value yes many Less \begin{matrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{matrix} has know y=x+3 seek y Of most Big value yes many Less (x>=0)
$$
\begin{bmatrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{bmatrix}
$$
[ has know y = x + 3 ( x > = 0 ) seek y Of most Big value yes many Less ] \begin{bmatrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{bmatrix} [ has know y=x+3 seek y Of most Big value yes many Less (x>=0)]
$$
\begin{Bmatrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{Bmatrix}
$$
{ has know y = x + 3 ( x > = 0 ) seek y Of most Big value yes many Less } \begin{Bmatrix} It is known that y=\sqrt{x+3}&&(x>=0)\\ seek y What is the maximum value of \end{Bmatrix} { has know y=x+3 seek y Of most Big value yes many Less (x>=0)}
$$
\begin{vmatrix}
0&1&2\\
3&4&5\\
6&7&8\\
\end{vmatrix}
$$
∣ 0 1 2 3 4 5 6 7 8 ∣ \begin{vmatrix} 0&1&2\\ 3&4&5\\ 6&7&8\\ \end{vmatrix} ∣∣∣∣∣∣036147258∣∣∣∣∣∣
$$
\begin{Vmatrix}
0&1&2\\
3&4&5\\
6&7&8\\
\end{Vmatrix}
$$
∥ 0 1 2 3 4 5 6 7 8 ∥ \begin{Vmatrix} 0&1&2\\ 3&4&5\\ 6&7&8\\ \end{Vmatrix} ∥∥∥∥∥∥036147258∥∥∥∥∥∥
- The Greek letter
α \alpha α、 β \beta β、 χ \chi χ、 Δ \Delta Δ、 Γ \Gamma Γ、 Θ \Theta Θ And so on.

- Some mathematical structures

- The effect is as follows :
$\frac{123}{999}$、$\sqrt[n]{abc}$、$\frac{\sqrt{234}}{\sqrt[n]{abc}}$、$\underrightarrow{abc}$、$\overrightarrow{abc}$
123 999 \frac{123}{999} 999123、 a b c n \sqrt[n]{abc} nabc、 234 a b c n \frac{\sqrt{234}}{\sqrt[n]{abc}} nabc234、 a b c → \underrightarrow{abc} abc、 a b c → \overrightarrow{abc} abc
- Insert delimiter

- The effect is as follows
$|$、$\|$、$\Uparrow$、$\{\}$
∣ | ∣、 ∥ \| ∥、 ⇑ \Uparrow ⇑、 { } \{\} { }
- Insert some variable size symbols

The effect is as follows :
$\sum$、$\int$、$\oint$、$\iint$、$\bigcap\bigcup\bigoplus\bigotimes$
∑ \sum ∑、 ∫ \int ∫、 ∮ \oint ∮、 ∬ \iint ∬、 ⋂ ⋃ ⨁ ⨂ \bigcap\bigcup\bigoplus\bigotimes ⋂⋃⨁⨂
- Insert some function names

The effect is as follows :
$\sin$、$\cos$、$\tan$、$\log$、 $\tan(at-n\pi)$
sin \sin sin、 cos \cos cos、 tan \tan tan、 log \log log、 tan ( a t − n π ) \tan(at-n\pi) tan(at−nπ)
- Relational operators and binary operators

The effect is as follows :
$\times$、$\ast$、$\div$、$\pm$、$\leq$、$\geq$、$\neq$、$\thickapprox$、$\sqsupset$、$\subset$、$\supseteq$、$\sqsupset$、$\sqsupseteq$、$\in$
× \times ×、 ∗ \ast ∗、 ÷ \div ÷、 ± \pm ±、 ≤ \leq ≤、 ≥ \geq ≥、 ≠ \neq =、 ≈ \thickapprox ≈、 ⊐ \sqsupset ⊐、 ⊂ \subset ⊂、 ⊇ \supseteq ⊇、 ⊐ \sqsupset ⊐、 ⊒ \sqsupseteq ⊒、 ∈ \in ∈
- Insert arrow symbol

The effect is as follows :
$\leftarrow$、$\Leftarrow$、$\nLeftarrow$、$\rightleftarrows$
← \leftarrow ←、 ⇐ \Leftarrow ⇐、 ⇍ \nLeftarrow ⇍、 ⇄ \rightleftarrows ⇄
- Other symbols

- The effect is as follows
$\infty$、$\angle$、$\int$、$\triangle$、$\square$
∞ \infty ∞、 ∠ \angle ∠、 ∫ \int ∫、 △ \triangle △、 □ \square □
- Insert superscript and subscript
use ^ Means superscript , use _ Indicates the lower mark
The effect is as follows :
sin 2 ( θ ) + cos 2 ( θ ) = 1 \sin^2(\theta) + \cos^2(\theta) = 1 sin2(θ)+cos2(θ)=1
∑ n = 1 ∞ k \sum_{n=1}^\infty k n=1∑∞k
∫ a b f ( x ) d x \int_a^bf(x)\,dx ∫abf(x)dx
lim x → ∞ exp ( − x ) = 0 \lim\limits_{x\to\infty}\exp(-x) = 0 x→∞limexp(−x)=0
Be careful :
\,The function in the integral is to increase the distance ,\!Will reduce some spacing .Output piecewise function
use\begin{cases}and\end{cases}To construct piecewise functions , In the middle\\Let's break it up
f ( x ) = { 2 x , x > 0 3 x , x ≤ 0 f(x) = \begin{cases} 2x,\,\,x>0\\ 3x,\,\,x\le0\\ \end{cases} f(x)={ 2x,x>03x,x≤0
- Some common mathematical formulas
$$
f'(x) = x^2 + x
$$
f ′ ( x ) = x 2 + x f'(x) = x^2 + x f′(x)=x2+x
$$
\lim_{x\to0}\frac{9x^5+7x^3}{x^2+6x^8}
$$
lim x → 0 9 x 5 + 7 x 3 x 2 + 6 x 8 \lim_{x\to0}\frac{9x^5+7x^3}{x^2+6x^8} x→0limx2+6x89x5+7x3
$$
\int_a^b f(x)\,dx
$$
∫ a b f ( x ) d x \int_a^b f(x)\,dx ∫abf(x)dx
$$
\int_0^{+\infty}f(x)\,dx
$$
∫ 0 + ∞ f ( x ) d x \int_0^{+\infty}f(x)\,dx ∫0+∞f(x)dx
$$
\int_{x^2+y^2\leq R^2} \,f(x,y)\,dx\,dy = \int_{\theta=0}^{2\pi}\int_{r=0}^R \,f(r\cos\theta,r\sin\theta)\,r\,dr\,d\theta
$$
∫ x 2 + y 2 ≤ R 2 f ( x , y ) d x d y = ∫ θ = 0 2 π ∫ r = 0 R f ( r cos θ , r sin θ ) r d r d θ \int_{x^2+y^2\leq R^2} \,f(x,y)\,dx\,dy = \int_{\theta=0}^{2\pi}\int_{r=0}^R \,f(r\cos\theta,r\sin\theta)\,r\,dr\,d\theta ∫x2+y2≤R2f(x,y)dxdy=∫θ=02π∫r=0Rf(rcosθ,rsinθ)rdrdθ
$$
\int\!\!\!\int_D f(x,y)dxdy
$$
∫ ∫ D f ( x , y ) d x d y \int\!\!\!\int_D f(x,y)dxdy ∫∫Df(x,y)dxdy
Reference resources :
https://zhuanlan.zhihu.com/p/158156773
边栏推荐
- 单元测试报告成功率低
- Rainbow 5.7.1 supports docking with multiple public clouds and clusters for abnormal alarms
- MES系统,是企业生产的必要选择
- The truth of robot education in hands-on practice
- Rainbow version 5.6 was released, adding a variety of installation methods and optimizing the topology operation experience
- opencv学习笔记二——图像基本操作
- 【雅思口语】安娜口语学习记录 Part2
- Don't stop chasing the wind and the moon. Spring mountain is at the end of Pingwu
- Several ways of lambda used in functions in kotlin (higher-order functions)
- Explore creativity in steam art design
猜你喜欢

Coquette data completes the cloud native transformation through rainbow to realize offline continuous delivery to customers

Xcit learning notes

The truth of robot education in hands-on practice

CCTV is so warm-hearted that it teaches you to write HR's favorite resume hand in hand

2-3查找树

单场带货涨粉10万,农村主播竟将男装卖爆单?

A method for quickly viewing pod logs under frequent tests (grep awk xargs kuberctl)

在 Rainbond 中一键安装高可用 Nacos 集群

PVTV2--Pyramid Vision TransformerV2学习笔记
![[untitled]](/img/b5/348b1d8b5d34cf10e715522b9871f2.png)
[untitled]
随机推荐
DeiT学习笔记
Using nocalhost to develop microservice application on rainbow
The truth of robot education in hands-on practice
解析机器人科技发展观对社会研究论
Use of out covariance and in inversion in kotlin
Splunk query CSV lookup table data dynamic query
Several ways of lambda used in functions in kotlin (higher-order functions)
CCTV is so warm-hearted that it teaches you to write HR's favorite resume hand in hand
2-3 lookup tree
National standard gb28181 protocol video platform easygbs adds streaming timeout configuration
opencv学习笔记三——图像平滑/去噪处理
How to understand distributed architecture and micro service architecture
Offer harvester: add and sum two long string numbers (classic interview algorithm question)
提高企业产品交付效率系列(1)—— 企业应用一键安装和升级
GFS distributed file system
Vulnerability recurrence easy_ tornado
opencv学习笔记五——梯度计算/边缘检测
Leetcode medium question my schedule I
A method for quickly viewing pod logs under frequent tests (grep awk xargs kuberctl)
Go语言中,函数是一种类型