当前位置:网站首页>Explain Bleu in machine translation task in detail
Explain Bleu in machine translation task in detail
2022-07-07 07:09:00 【aelum】
Catalog
One 、 n n n Metagrammar (N-Gram)
n n n Metagrammar (n-gram) Refers to the text continuity The emergence of n n n individual Morpheme . When n n n Respectively 1 , 2 , 3 1,2,3 1,2,3 when ,n-gram It's also called unigram( Unary grammar )、bigram( Binary grammar ) and trigram( Ternary grammar ).
n n n The meta grammar model is based on n − 1 n-1 n−1 A probabilistic language model of order Markov chains ( That is, only the former is considered n − 1 n-1 n−1 When words appear , The probability of the latter word ):
unigram: P ( w 1 , w 2 , ⋯ , w T ) = ∏ i = 1 T P ( w i ) bigram: P ( w 1 , w 2 , ⋯ , w T ) = P ( x 1 ) ∏ i = 1 T − 1 P ( w i + 1 ∣ w i ) trigram: P ( w 1 , w 2 , ⋯ , w T ) = P ( x 1 ) P ( x 2 ∣ x 1 ) ∏ i = 1 T − 2 P ( w i + 2 ∣ w i , w i + 1 ) \begin{aligned} \text{unigram:}\quad&P(w_1,w_2,\cdots,w_T)=\prod_{i=1}^T P(w_i) \\ \text{bigram:}\quad&P(w_1,w_2,\cdots,w_T)=P(x_1)\prod_{i=1}^{T-1} P(w_{i+1}|w_i) \\ \text{trigram:}\quad&P(w_1,w_2,\cdots,w_T)=P(x_1)P(x_2|x_1)\prod_{i=1}^{T-2} P(w_{i+2}|w_{i},w_{i+1}) \\ \end{aligned} unigram:bigram:trigram:P(w1,w2,⋯,wT)=i=1∏TP(wi)P(w1,w2,⋯,wT)=P(x1)i=1∏T−1P(wi+1∣wi)P(w1,w2,⋯,wT)=P(x1)P(x2∣x1)i=1∏T−2P(wi+2∣wi,wi+1)
Two 、BLEU(Bilingual Evaluation Understudy)
2.1 BLEU Definition
BLEU( Pronunciation and words blue identical ) It was first used to evaluate the results of machine translation , But now it has been widely used to evaluate the quality of output sequences in many applications . For the prediction sequence pred Any of the n n n Metagrammar , BLEU This is the assessment of n n n Whether the meta syntax appears in the tag sequence label in .
BLEU The definition is as follows :
BLEU = exp ( min ( 0 , 1 − len(label) len(pred) ) ) ∏ n = 1 k p n 1 / 2 n \text{BLEU}=\exp\left(\min\left(0,1-\frac{\text{len(label)}}{\text{len(pred)}}\right)\right)\prod_{n=1}^kp_n^{1/2^n} BLEU=exp(min(0,1−len(pred)len(label)))n=1∏kpn1/2n
among len(*) \text{len(*)} len(*) Represents a sequence ∗ * ∗ The number of lexical elements in , k k k Used to match the longest n n n Metagrammar ( Constant access 4 4 4), p n p_n pn Express n n n The accuracy of meta grammar .
To be specific , Given label: A , B , C , D , E , F A,B,C,D,E,F A,B,C,D,E,F and pred: A , B , B , C , D A,B,B,C,D A,B,B,C,D, take k = 3 k=3 k=3.
First of all to see p 1 p_1 p1 How to calculate . We will first pred Each of the unigram It's all figured out : ( A ) , ( B ) , ( B ) , ( C ) , ( D ) (A),(B),(B),(C),(D) (A),(B),(B),(C),(D), then label Each of the unigram It's all figured out : ( A ) , ( B ) , ( C ) , ( D ) , ( E ) , ( F ) (A),(B),(C),(D),(E),(F) (A),(B),(C),(D),(E),(F), Then see how many matches there are between them ( Cannot match repeatedly , That is, one-to-one correspondence must be maintained ). It can be seen that there are 4 4 4 A match , and pred There's a total of 5 5 5 individual unigram, therefore p 1 = 4 / 5 p_1=4/5 p1=4/5.
Look again. p 2 p_2 p2 How to calculate . We will first pred Each of the bigram It's all figured out : ( A , B ) , ( B , B ) , ( B , C ) , ( C , D ) (A,B),(B,B),(B,C),(C,D) (A,B),(B,B),(B,C),(C,D), then label Each of the bigram It's all figured out : ( A , B ) , ( B , C ) , ( C , D ) , ( D , E ) , ( E , F ) (A,B),(B,C),(C,D),(D,E),(E,F) (A,B),(B,C),(C,D),(D,E),(E,F), Then see how many matches there are between them . It can be seen that there are 3 3 3 A match , and pred There's a total of 4 4 4 individual bigram, therefore p 2 = 3 / 4 p_2=3/4 p2=3/4.
Finally, let's see p 3 p_3 p3 How to calculate . We will first pred Each of the trigram It's all figured out : ( A , B , B ) , ( B , B , C ) , ( B , C , D ) (A,B,B),(B,B,C),(B,C,D) (A,B,B),(B,B,C),(B,C,D), then label Each of the trigram It's all figured out : ( A , B , C ) , ( B , C , D ) , ( C , D , E ) , ( D , E , F ) (A,B,C),(B,C,D),(C,D,E),(D,E,F) (A,B,C),(B,C,D),(C,D,E),(D,E,F), Then see how many matches there are between them . It can be seen that only 1 1 1 A match , and pred There's a total of 3 3 3 individual trigram, therefore p 3 = 1 / 3 p_3=1/3 p3=1/3.
So in this case BLEU The score is
BLEU = exp ( min ( 0 , 1 − 6 / 5 ) ) ⋅ p 1 1 / 2 ⋅ p 2 1 / 4 ⋅ p 3 1 / 8 = e − 0.2 ⋅ ( 4 5 ) 1 / 2 ⋅ ( 3 4 ) 1 / 4 ⋅ ( 1 3 ) 1 / 8 ≈ 0.5940 \begin{aligned} \text{BLEU}&=\exp(\min(0,1-6/5))\cdot p_1^{1/2}\cdot p_2^{1/4}\cdot p_3^{1/8} \\ &=e^{-0.2}\cdot \left(\frac45\right)^{1/2}\cdot \left(\frac34\right)^{1/4}\cdot\left(\frac13\right)^{1/8} \\ &\approx0.5940 \end{aligned} BLEU=exp(min(0,1−6/5))⋅p11/2⋅p21/4⋅p31/8=e−0.2⋅(54)1/2⋅(43)1/4⋅(31)1/8≈0.5940
2.2 BLEU Discussion
according to BLEU The definition of , When the prediction sequence is exactly the same as the tag sequence ,BLEU The value of is 1 1 1. On the other hand , because e x > 0 e^x>0 ex>0 And p n ≥ 0 p_n\geq0 pn≥0, So there is
BLEU ∈ [ 0 , 1 ] \text{BLEU}\in[0,1] BLEU∈[0,1]
BLEU The closer the value of 1 1 1, It means the better the prediction effect ;BLEU The closer the value of 0 0 0, It means the worse the prediction effect .
Besides , because n n n The longer the metagrammar, the more difficult it is to match , therefore BLEU For longer n n n The accuracy of meta syntax assigns greater weight ( Fix a ∈ ( 0 , 1 ) a\in(0,1) a∈(0,1), be a 1 / 2 n a^{1/2^n} a1/2n Will follow n n n To increase by ). and , Because the shorter the prediction sequence is p n p_n pn The higher the value , So the coefficient exp ( ⋅ ) \exp(\cdot) exp(⋅) This term is used to punish shorter prediction sequences .
2.3 BLEU Simple implementation of
import math
from collections import Counter
def bleu(label, pred, k=4):
# Let's assume that the input label and pred Word segmentation has been carried out
score = math.exp(min(0, 1 - len(label) / len(pred)))
for n in range(1, k + 1):
# Use hash table to store label All of the n-gram
hashtable = Counter([' '.join(label[i:i + n]) for i in range(len(label) - n + 1)])
# The number of successful matches
num_matches = 0
for i in range(len(pred) - n + 1):
ngram = ' '.join(pred[i:i + n])
if ngram in hashtable and hashtable[ngram] > 0:
num_matches += 1
hashtable[ngram] -= 1
score *= math.pow(num_matches / (len(pred) - n + 1), math.pow(0.5, n))
return score
for example :
label = 'A B C D E F'
pred = 'A B B C D'
for i in range(4):
print(bleu(label.split(), pred.split(), k=i + 1))
# 0.7322950476607851
# 0.6814773296495302
# 0.5940339360503315
# 0.0
References
边栏推荐
- Take you to brush (niuke.com) C language hundred questions (the first day)
- libcurl返回curlcode说明
- Mysql---- import and export & View & Index & execution plan
- MySQL view bin log and recover data
- Abnova membrane protein lipoprotein technology and category display
- 7天零基础能考证HCIA吗?华为认证系统学习路线分享
- MySql用户权限
- linux系统rpm方式安装的mysql启动失败
- ViewModelProvider. Of obsolete solution
- Circulating tumor cells - here comes abnova's solution
猜你喜欢

健身房如何提高竞争力?

MOS管参数μCox得到的一种方法

How can brand e-commerce grow against the trend? See the future here!

Reflection (II)

SolidWorks的GB库(钢型材库,包括铝型材、铝管等结构)安装及使用教程(生成铝型材为例)

Prime partner of Huawei machine test questions

组件的嵌套和拆分

Basic introduction of JWT

Circulating tumor cells - here comes abnova's solution

企業如何進行數據治理?分享數據治理4個方面的經驗總結
随机推荐
toRefs API 与 toRef Api
企業如何進行數據治理?分享數據治理4個方面的經驗總結
Leetcode t1165: log analysis
Four goals for the construction of intelligent safety risk management and control platform for hazardous chemical enterprises in Chemical Industry Park
Basic introduction of JWT
MYSQL binlog相关命令
[Luogu p1971] rabbit and egg game (bipartite game)
Databinding exception of kotlin
品牌·咨询标准化
Answer to the second stage of the assignment of "information security management and evaluation" of the higher vocational group of the 2018 Jiangsu Vocational College skills competition
MATLAB小技巧(30)非线性拟合 lsqcurefit
JDBC database connection pool usage problem
异步组件和Suspense(真实开发中)
JWT的基础介绍
Bus消息总线
【NOI模拟赛】区域划分(结论,构造)
Under what circumstances should we consider sub database and sub table
Please ask a question, flick Oracle CDC, read a table without update operation, and repeatedly read the full amount of data every ten seconds
How can gyms improve their competitiveness?
MySQL的主从复制原理