当前位置:网站首页>pytorch fine-tuning (funtune) : 镂空设计or 偷梁换柱
pytorch fine-tuning (funtune) : 镂空设计or 偷梁换柱
2022-07-05 01:28:00 【FakeOccupational】
偷梁换柱 or 貂尾续狗
# 导入包
import glob
import os
import torch
import matplotlib.pyplot as plt
import random #用于数据迭代器生成随机数据
# 生成数据集 x1类别0,x2类别1
n_data = torch.ones(50, 2) # 数据的基本形态
x1 = torch.normal(2 * n_data, 1) # shape=(50, 2)
y1 = torch.zeros(50) # 类型0 shape=(50, 1)
x2 = torch.normal(-2 * n_data, 1) # shape=(50, 2)
y2 = torch.ones(50) # 类型1 shape=(50, 1)
# 注意 x, y 数据的数据形式一定要像下面一样(torch.cat是合并数据)
x = torch.cat((x1, x2), 0).type(torch.FloatTensor)
y = torch.cat((y1, y2), 0).type(torch.FloatTensor)
# 数据集可视化
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
plt.show()
# 数据读取:
def data_iter(batch_size, x, y):
num_examples = len(x)
indices = list(range(num_examples))
random.shuffle(indices) # 样本的读取顺序是随机的
for i in range(0, num_examples, batch_size):
j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) #最后一次可能不足一个batch
yield x.index_select(0, j), y.index_select(0, j)
import torch.nn as nn
import torch.optim as optim
class net(nn.Module):
def __init__(self, **kwargs):
super(net, self).__init__(**kwargs)
self.net = nn.Sequential(
nn.Linear(2, 2),
nn.Linear(2, 2),
nn.Linear(2, 1),
nn.ReLU())
def forward(self, x):
return self.net(x)
def loss(y_hat, y):
return (y_hat - y.view(y_hat.size())) ** 2 / 2
def accuracy(y_hat, y): #@save
"""计算预测正确的数量。"""
cmp = y_hat.type(y.dtype) > 0.5 # 大于0.5类别1
result=cmp.type(y.dtype)
acc = 1-float(((result-y).sum())/ len(y))
return acc;
lr = 0.03
num_epochs = 3 # 迭代次数
batch_size = 10 # 批量大小
model = net()
params = list(model.parameters())
optimizer = torch.optim.Adam(params, 1e-4)
def loader(model_path):
state_dict = torch.load(model_path)
model_state_dict = state_dict["model_state_dict"]
optimizer_state_dict = state_dict["optimizer_state_dict"]
return model_state_dict, optimizer_state_dict
model_state_dict, optimizer_state_dict = loader("h1")
model.load_state_dict(model_state_dict)
optimizer.load_state_dict(optimizer_state_dict)
print('pretrained models loaded!')
# net(
# (net): Sequential(
# (0): Linear(in_features=2, out_features=1, bias=True)
# (1): Linear(in_features=1, out_features=2, bias=True)
# (2): Linear(in_features=2, out_features=1, bias=True)
# (3): ReLU()
# )
# )
for param in model.parameters():
param.requires_grad = False
print(model.net[2])
num_fc_in = model.net[2].in_features
print("fc层的输入维度",num_fc_in)
model.net[2] = nn.Linear(num_fc_in, 3) # 偷梁换柱 貂尾续狗
print(model)
aa = model.net[1]# 参数不可学习 Parameter containing:tensor([-0.0303, -0.9412])
aa = model.net[2]# 参数可学习 Parameter containing:tensor([0.4327, 0.1848, 0.3112], requires_grad=True)
镂空设计
# net(
# (net): Sequential(
# (0): Linear(in_features=2, out_features=1, bias=True)
# (1): Linear(in_features=1, out_features=2, bias=True)
# (2): Linear(in_features=2, out_features=1, bias=True)
# (3): ReLU()
# )
# )
================================》
# net(
# (net): Sequential(
# (0): Linear(in_features=2, out_features=2, bias=True)
# (1): Identity()
# (2): Linear(in_features=2, out_features=1, bias=True)
# (3): ReLU()
# )
# )
# https://discuss.pytorch.org/t/how-to-delete-layer-in-pretrained-model/17648/16
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
# 导入包
import glob
import os
import torch
import matplotlib.pyplot as plt
import random #用于数据迭代器生成随机数据
# 生成数据集 x1类别0,x2类别1
n_data = torch.ones(50, 2) # 数据的基本形态
x1 = torch.normal(2 * n_data, 1) # shape=(50, 2)
y1 = torch.zeros(50) # 类型0 shape=(50, 1)
x2 = torch.normal(-2 * n_data, 1) # shape=(50, 2)
y2 = torch.ones(50) # 类型1 shape=(50, 1)
# 注意 x, y 数据的数据形式一定要像下面一样(torch.cat是合并数据)
x = torch.cat((x1, x2), 0).type(torch.FloatTensor)
y = torch.cat((y1, y2), 0).type(torch.FloatTensor)
# 数据集可视化
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
plt.show()
# 数据读取:
def data_iter(batch_size, x, y):
num_examples = len(x)
indices = list(range(num_examples))
random.shuffle(indices) # 样本的读取顺序是随机的
for i in range(0, num_examples, batch_size):
j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) #最后一次可能不足一个batch
yield x.index_select(0, j), y.index_select(0, j)
import torch.nn as nn
import torch.optim as optim
class net(nn.Module):
def __init__(self, **kwargs):
super(net, self).__init__(**kwargs)
self.net = nn.Sequential(
nn.Linear(2, 2),
nn.Linear(2, 2),
nn.Linear(2, 1),
nn.ReLU())
def forward(self, x):
return self.net(x)
def loss(y_hat, y):
return (y_hat - y.view(y_hat.size())) ** 2 / 2
def accuracy(y_hat, y): #@save
"""计算预测正确的数量。"""
cmp = y_hat.type(y.dtype) > 0.5 # 大于0.5类别1
result=cmp.type(y.dtype)
acc = 1-float(((result-y).sum())/ len(y))
return acc;
lr = 0.03
num_epochs = 3 # 迭代次数
batch_size = 10 # 批量大小
model = net()
params = list(model.parameters())
optimizer = torch.optim.Adam(params, 1e-4)
def loader(model_path):
state_dict = torch.load(model_path)
model_state_dict = state_dict["model_state_dict"]
optimizer_state_dict = state_dict["optimizer_state_dict"]
return model_state_dict, optimizer_state_dict
model_state_dict, optimizer_state_dict = loader("h1")
model.load_state_dict(model_state_dict)
optimizer.load_state_dict(optimizer_state_dict)
print('pretrained models loaded!')
# for param in model.parameters():
# param.requires_grad = False
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
model.net[1] = Identity()
for epoch in range(num_epochs):
for X, y_train in data_iter(batch_size, x, y):
optimizer.zero_grad()
res = model(X)[:,0]
l = loss(res, y_train).sum() # l是有关小批量X和y的损失
l.backward(retain_graph=True)
optimizer.step()
print(l)
头部担当
# import some dependencies https://boscoj2008.github.io/customCNN/
import glob
import os
import torchvision
import torch
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
import torch.optim as optim
import time
import torch.nn as nn
import torch.nn.functional as F
torch.set_printoptions(linewidth=120)
class Network(nn.Module): # extend nn.Module class of nn
def __init__(self):
super().__init__() # super class constructor
self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=(5, 5))
self.batchN1 = nn.BatchNorm2d(num_features=6)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=(5, 5))
self.fc1 = nn.Linear(in_features=12 * 4 * 4, out_features=120)
self.batchN2 = nn.BatchNorm1d(num_features=120)
self.fc2 = nn.Linear(in_features=120, out_features=60)
self.out = nn.Linear(in_features=60, out_features=10)
def forward(self, t): # implements the forward method (flow of tensors)
t = self.addconv1(t)# TODO 注意,再保存模型时注释掉这句
# hidden conv layer
t = self.conv1(t)
t = F.max_pool2d(input=t, kernel_size=2, stride=2)
t = F.relu(t)
t = self.batchN1(t)
# hidden conv layer
t = self.conv2(t)
t = F.max_pool2d(input=t, kernel_size=2, stride=2)
t = F.relu(t)
# flatten
t = t.reshape(-1, 12 * 4 * 4)
t = self.fc1(t)
t = F.relu(t)
t = self.batchN2(t)
t = self.fc2(t)
t = F.relu(t)
# output
t = self.out(t)
return t
cnn_model = Network() # init model
print(cnn_model)
mean = 0.2859; std = 0.3530 # calculated using standization from the MNIST itself which we skip in this blog
def saver(model_state_dict, optimizer_state_dict, model_path, epoch, max_to_save=30):
total_models = glob.glob(model_path + '*')
if len(total_models) >= max_to_save:
total_models.sort()
os.remove(total_models[0])
state_dict = {}
state_dict["model_state_dict"] = model_state_dict
state_dict["optimizer_state_dict"] = optimizer_state_dict
torch.save(state_dict, model_path + 'h' + str(epoch))
print('models {} save successfully!'.format(model_path + 'hahaha' + str(epoch)))
optimizer = optim.Adam(lr=0.01, params=cnn_model.parameters())
# for epoch in range(3):
# start_time = time.time()
# total_correct = 0
# total_loss = 0
# for batch in range(10):
# imgs, lbls = torch.rand(10,1,28,28),torch.tensor([0, 5, 3, 4, 4, 4, 7, 6, 2, 5])
# preds = cnn_model(imgs) # get preds
# loss = F.cross_entropy(preds, lbls) # compute loss
# optimizer.zero_grad() # zero grads
# loss.backward() # calculates gradients
# optimizer.step() # update the weights
# accuracy = total_correct / 10
# end_time = time.time() - start_time
# print("Epoch no.", epoch + 1, "|accuracy: ", round(accuracy, 3), "%", "|total_loss: ", total_loss,
# "| epoch_duration: ", round(end_time, 2), "sec")
# saver(cnn_model.state_dict(), optimizer.state_dict(), "./", epoch + 1, max_to_save=100)
def loader(model_path):
state_dict = torch.load(model_path)
model_state_dict = state_dict["model_state_dict"]
optimizer_state_dict = state_dict["optimizer_state_dict"]
return model_state_dict, optimizer_state_dict
model_state_dict, optimizer_state_dict = loader("h1")
cnn_model.load_state_dict(model_state_dict)
optimizer.load_state_dict(optimizer_state_dict)
print('pretrained models loaded!')
cnn_model.addconv1 = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(1, 1))
for epoch in range(3):
start_time = time.time()
total_correct = 0
total_loss = 0
for batch in range(10):
imgs, lbls = torch.rand(10,1,28,28),torch.tensor([0, 5, 3, 4, 4, 4, 7, 6, 2, 5])
preds = cnn_model(imgs) # get preds
loss = F.cross_entropy(preds, lbls) # compute loss
optimizer.zero_grad() # zero grads
loss.backward() # calculates gradients
optimizer.step() # update the weights
accuracy = total_correct / 10
end_time = time.time() - start_time
print("Epoch no.", epoch + 1, "|accuracy: ", round(accuracy, 3), "%", "|total_loss: ", total_loss,
"| epoch_duration: ", round(end_time, 2), "sec")
saver(cnn_model.state_dict(), optimizer.state_dict(), "./", epoch + 1, max_to_save=100)
边栏推荐
- Global and Chinese market of portable CNC cutting machines 2022-2028: Research Report on technology, participants, trends, market size and share
- Wechat applet: exclusive applet version of the whole network, independent wechat community contacts
- RB technology stack
- Delaying wages to force people to leave, and the layoffs of small Internet companies are a little too much!
- Wechat applet: independent background with distribution function, Yuelao office blind box for making friends
- 【海浪建模2】三维海浪建模以及海浪发电机建模matlab仿真
- 潘多拉 IOT 开发板学习(RT-Thread)—— 实验4 蜂鸣器+马达实验【按键外部中断】(学习笔记)
- Wechat applet; Gibberish generator
- Is there a sudden failure on the line? How to make emergency diagnosis, troubleshooting and recovery
- What happened to those who focused on automated testing?
猜你喜欢
PHP wechat official account development
[untitled]
I was beaten by the interviewer because I didn't understand the sorting
资深测试/开发程序员写下无bug?资历(枷锁)不要惧怕错误......
Is there a sudden failure on the line? How to make emergency diagnosis, troubleshooting and recovery
Daily question brushing record (13)
phpstrom设置函数注释说明
Exploration and practice of integration of streaming and wholesale in jd.com
Wechat applet; Gibberish generator
微信小程序:微群人脉微信小程序源码下载全新社群系统优化版支持代理会员系统功能超高收益
随机推荐
Heartless sword English translation of Xi Murong's youth without complaint
Database postragesq role membership
Async/await you can use it, but do you know how to deal with errors?
Implementation steps of master detail detail layout mode of SAP ui5 application
Armv8-a programming guide MMU (3)
Complex, complicated and numerous: illustration of seven types of code coupling
每日刷题记录 (十三)
Playwright recording
What is the current situation and Prospect of the software testing industry in 2022?
流批一体在京东的探索与实践
MySQL REGEXP:正则表达式查询
Basic operation of database and table ----- the concept of index
[FPGA tutorial case 10] design and implementation of complex multiplier based on Verilog
Research Report on the overall scale, major producers, major regions, products and application segmentation of agricultural automatic steering system in the global market in 2022
Applet live + e-commerce, if you want to be a new retail e-commerce, use it!
【海浪建模1】海浪建模的理论分析和matlab仿真
Classification of performance tests (learning summary)
微信小程序:全新独立后台月老办事处一元交友盲盒
Database postragesq PAM authentication
Exploration and practice of integration of streaming and wholesale in jd.com