当前位置:网站首页>强化学习基础记录

强化学习基础记录

2022-07-06 09:22:00 喜欢库里的强化小白

Actor-Critic强化学习记录


  强化学习的算法大致分为三类,value-based、policy-based和两者的结合Actor-Critic,这里简单写一下近期对AC的学习心得。

一、环境介绍

  这里使用的是gym环境的’CartPole-v1’,该环境和上篇文章的’CartPole-v0’几乎没有什么区别,主要区别在于每个回合的最大步数和奖励的有关定义,如下图所示。

在这里插入图片描述
  在本文中,想尝试结合On-Policy的算法,所以对单回合的的最大步数做了限制,大小为100。

  'CartPole-v0’环境的详细介绍附上链接。
  链接: OpenAI Gym 经典控制环境介绍——CartPole(倒立摆)

二、算法简单介绍

  1. Actor-Critic
      该算法有两个框架,即策略相关的Actor网络和值相关的Critic网络。由于这里采用随机性策略,所以Actor网络利用了softmax函数将概率进行归一化;Critic为网络利用v值进行计算。此外,这里利用了A2C的优势函数(Advantage)。
    在这里插入图片描述
  2. On-Policy
      这里采取了On-Policy的算法,注意每回合100步游戏,会产生100条transition,待将这些transition存储之后,开始学习,直接利用这100个样本,并且将样本清空,以便下一回合获得新的样本。
    在这里插入图片描述
  3. AC(A2C)伪代码:
    在这里插入图片描述
    在这里插入图片描述
  4. 实现
      这里的实现参考了网上的教程,但是源代码只是Policy-Gradient的方法,这里进行了简单修改。此外,这里是随机性策略,本身就增加了探索性,不同于之前的确定性策略,用到了torch的抽样函数,具体还没研究。结果也附在下图,可以看到经过训练后,奖励基本上收敛到100。
import gym
import numpy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
import matplotlib.pyplot as plt

# Hyperparameters
learning_rate = 0.0002
gamma = 0.98
n_rollout = 100
MAX_EPISODE = 20000
RENDER = False

env = gym.make('CartPole-v1')
env = env.unwrapped
env.seed(1)
torch.manual_seed(1)

#print("env.action_space :", env.action_space)
#print("env.observation_space :", env.observation_space)

n_features = env.observation_space.shape[0]
n_actions = env.action_space.n


class ActorCritic(nn.Module):
    def __init__(self):
        super(ActorCritic, self).__init__()
        self.data = []
        hidden_dims = 256
        self.feature_layer = nn.Sequential(nn.Linear(n_features, hidden_dims),
                                           nn.ReLU())
        self.fc_pi = nn.Linear(hidden_dims, n_actions)
        self.fc_v = nn.Linear(hidden_dims, 1)
        self.optimizer = optim.Adam(self.parameters(), lr=learning_rate)


    def pi(self, x):
        x = self.feature_layer(x)
        x = self.fc_pi(x)
        prob = F.softmax(x, dim=-1)
        return prob

    def v(self, x):
        x = self.feature_layer(x)
        v = self.fc_v(x)
        return v

    def put_data(self, transition):
        self.data.append(transition)

    def make_batch(self):
        s_lst, a_lst, r_lst, s_next_lst, done_lst = [], [], [], [], []
        for transition in self.data:
            s, a, r, s_, done = transition
            s_lst.append(s)
            a_lst.append([a])
            r_lst.append([r / 100.0])
            s_next_lst.append(s_)
            done_mask = 0.0 if done else 1.0
            done_lst.append([done_mask])

        s_batch, a_batch, r_batch, s_next_batch, done_batch = torch.tensor(numpy.array(s_lst),
                                                                           dtype=torch.float), torch.tensor(
            a_lst), torch.tensor(numpy.array(r_lst), dtype=torch.float), torch.tensor(
            numpy.array(s_next_lst), dtype=torch.float), torch.tensor(
            numpy.array(done_lst), dtype=torch.float)
        self.data = []
        return s_batch, a_batch, r_batch, s_next_batch, done_batch

    def train_net(self):
        s, a, r, s_, done = self.make_batch()
        td_target = r + gamma * self.v(s_) * done
        delta = td_target - self.v(s)
        def critic_learn():

            loss_func = nn.MSELoss()
            loss1 = loss_func(self.v(s),td_target)

            self.optimizer.zero_grad()
            loss1.backward()
            self.optimizer.step()

        def actor_learn():

            pi = self.pi(s)
            pi_a = pi.gather(1, a)
            loss = -torch.log(pi_a) * delta.detach() + F.smooth_l1_loss(self.v(s), td_target.detach())


            self.optimizer.zero_grad()
            loss.mean().backward()
            self.optimizer.step()

        critic_learn()
        actor_learn()


def main():
    model = ActorCritic()
    print_interval = 20
    score = 0.0
    avg_returns = []

    for n_epi in range(MAX_EPISODE):
        s = env.reset()

        for t in range(n_rollout):

            prob = model.pi(torch.from_numpy(s).float())
            m = Categorical(prob)
            a = m.sample().item()
            s_next, r, done, info = env.step(a)
            model.put_data((s, a, r, s_next, done))

            s = s_next
            score += r

        model.train_net()

        if n_epi % print_interval == 0 and n_epi != 0:
            avg_score = score / print_interval
            print("# of episode :{}, avg score : {:.1f}".format(n_epi, score / print_interval))
            avg_returns.append(avg_score)
            score = 0.0
    env.close()
    plt.figure()
    plt.plot(range(len(avg_returns)),avg_returns)
    plt.xlabel('episodes')
    plt.ylabel('avg score')
    plt.savefig('./plt_ac.png',format= 'png')


if __name__ == '__main__':
    main()

在这里插入图片描述

原网站

版权声明
本文为[喜欢库里的强化小白]所创,转载请带上原文链接,感谢
https://blog.csdn.net/weixin_47471559/article/details/124784616