当前位置:网站首页>Open3d learning note 3 [sampling and voxelization]
Open3d learning note 3 [sampling and voxelization]
2022-07-02 07:54:00 【Silent clouds】
open3d Voxelization of learning notes
One 、 Add some small knowledge
1、 With mesh Mode reading ply file
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()

2. Rotation matrix
The 3D model uses R,T Two parameters to transform , The spatial coordinate system of the view is established : Up for z Axis , To the right is y Axis ,x The axis points to the front of the screen . Use transform Method transform coordinates , The transformation matrix is [4*4] Matrix ,transform([[R, T], [0, 1]]).
Read one normally ply file :
import open3d as o3d
pcd = o3d.io.read_point_cloud("mode/Fantasy Dragon.ply")
o3d.visualization.draw_geometries([pcd], width=1280, height=720)
The display effect is as shown in the figure :
Use the conversion function , Put him horizontally , And the head faces the screen . Then it is to change the original z Shaft change to y Axis ,y Shaft change to x Axis ,x Shaft change to z Axis , So the code is :
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()
mesh.transform([[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1]])
o3d.visualization.draw_geometries([mesh], width=1280, height=720)
effect :
Two 、 The way to convert to point cloud
1、 Turn into numpy The array is redrawn into a point cloud
import open3d as o3d
import numpy as np
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()
v_mesh = np.asarray(mesh.vertices)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(v_mesh)
o3d.visualization.draw_geometries([pcd], width=1280, height=720)

about ply The format of the file is ok , But if stl This triangular mesh , The result of transformation will be a little unsatisfactory .
2、 sampling
open3d Provides a sampling method , Sampling points can be set , simplified model .
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/ganyu.STL")
mesh.compute_vertex_normals()
pcd = o3d.geometry.TriangleMesh.sample_points_uniformly(mesh, number_of_points=10000) # Sampling point cloud
o3d.visualization.draw_geometries([pcd], width=1280, height=720)

3、 ... and 、 Voxelization
Voxelization , Can simplify the model , Get a uniform mesh .
Convert triangle mesh to voxel mesh
import open3d as o3d
import numpy as np
print("Load a ply point cloud, print it, and render it")
mesh = o3d.io.read_triangle_mesh("mode/ganyu.STL")
mesh.compute_vertex_normals()
mesh.scale(1 / np.max(mesh.get_max_bound() - mesh.get_min_bound()), center=mesh.get_center())
voxel_grid = o3d.geometry.VoxelGrid.create_from_triangle_mesh(mesh, voxel_size=0.05)
o3d.visualization.draw_geometries([voxel_grid], width=1280, height=720)

Point cloud generates voxel mesh
import open3d as o3d
import numpy as np
print("Load a ply point cloud, print it, and render it")
pcd = o3d.io.read_point_cloud("mode/Fantasy Dragon.ply")
pcd.scale(1 / np.max(pcd.get_max_bound() - pcd.get_min_bound()), center=pcd.get_center())
pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0,1,size=(2000,3)))
print('voxelization')
voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=0.05)
o3d.visualization.draw_geometries([voxel_grid], width=1280, height=720)

Four 、 Vertex normal estimation
voxel_down_pcd = pcd.voxel_down_sample(voxel_size=0.05)
voxel_down_pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
o3d.visualization.draw_geometries([voxel_down_pcd], point_show_normal=True, width=1280, height=720)
estimate_normals Calculate the normal of each point . This function finds adjacent points and calculates the principal axis of adjacent points using covariance analysis .
This function will KDTreeSearchParamHybrid Class as a parameter . The two key parameters are the specified search radius and the maximum nearest neighbor .radius=0.1, max_nn=30 That is to 10cm Search radius for , And only consider 30 Adjacent points to save computing time .

Read the normal vector
print(" Print the first vector :")
print(voxel_down_pcd.normals[0])
# Print the first vector :
#[ 0.51941952 0.82116269 -0.23642166]
# Print the first ten normal vectors
print(np.asarray(voxel_down_pcd.normals)[:10,:])
5、 ... and 、 What should be noted
- pcd The format file belongs to the point cloud type ,ply It can be read in point cloud and grid mode at the same time , use mesh When reading , It can be treated as triangular mesh , use pcd Reading can be directly used as point cloud data processing .
- When triangle meshes are directly sampled and then normals are calculated, there will be errors in normal annotation , That is, all normals point in one direction .
- To avoid sampling normal errors, use
sample_points_poisson_disk()Method sampling .
边栏推荐
- MoCO ——Momentum Contrast for Unsupervised Visual Representation Learning
- Comparison of chat Chinese corpus (attach links to various resources)
- One book 1078: sum of fractional sequences
- 【Batch】learning notes
- Summary of solving the Jetson nano installation onnx error (error: failed building wheel for onnx)
- conda常用命令
- Win10+vs2017+denseflow compilation
- Calculate the total in the tree structure data in PHP
- Solve the problem of latex picture floating
- 【DIoU】《Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression》
猜你喜欢

【MobileNet V3】《Searching for MobileNetV3》
![How do vision transformer work? [interpretation of the paper]](/img/93/5f967b876fbd63c07b8cfe8dd17263.png)
How do vision transformer work? [interpretation of the paper]

【Wing Loss】《Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks》

Replace self attention with MLP

浅谈深度学习模型中的后门

EKLAVYA -- 利用神经网络推断二进制文件中函数的参数

ABM thesis translation

Feature Engineering: summary of common feature transformation methods

用MLP代替掉Self-Attention

Replace convolution with full connection layer -- repmlp
随机推荐
Two dimensional array de duplication in PHP
iOD及Detectron2搭建过程问题记录
How to clean up logs on notebook computers to improve the response speed of web pages
程序的执行
Timeout docking video generation
Daily practice (19): print binary tree from top to bottom
【双目视觉】双目矫正
超时停靠视频生成
[mixup] mixup: Beyond Imperial Risk Minimization
【Sparse-to-Dense】《Sparse-to-Dense:Depth Prediction from Sparse Depth Samples and a Single Image》
[CVPR‘22 Oral2] TAN: Temporal Alignment Networks for Long-term Video
MMDetection安装问题
Common CNN network innovations
Summary of open3d environment errors
【Random Erasing】《Random Erasing Data Augmentation》
【学习笔记】Matlab自编图像卷积函数
【Mixed Pooling】《Mixed Pooling for Convolutional Neural Networks》
[binocular vision] binocular stereo matching
How do vision transformer work? [interpretation of the paper]
【FastDepth】《FastDepth:Fast Monocular Depth Estimation on Embedded Systems》