当前位置:网站首页>Open3d learning note 3 [sampling and voxelization]
Open3d learning note 3 [sampling and voxelization]
2022-07-02 07:54:00 【Silent clouds】
open3d Voxelization of learning notes
One 、 Add some small knowledge
1、 With mesh Mode reading ply file
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()

2. Rotation matrix
The 3D model uses R,T Two parameters to transform , The spatial coordinate system of the view is established : Up for z Axis , To the right is y Axis ,x The axis points to the front of the screen . Use transform Method transform coordinates , The transformation matrix is [4*4] Matrix ,transform([[R, T], [0, 1]]).
Read one normally ply file :
import open3d as o3d
pcd = o3d.io.read_point_cloud("mode/Fantasy Dragon.ply")
o3d.visualization.draw_geometries([pcd], width=1280, height=720)
The display effect is as shown in the figure :
Use the conversion function , Put him horizontally , And the head faces the screen . Then it is to change the original z Shaft change to y Axis ,y Shaft change to x Axis ,x Shaft change to z Axis , So the code is :
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()
mesh.transform([[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1]])
o3d.visualization.draw_geometries([mesh], width=1280, height=720)
effect :
Two 、 The way to convert to point cloud
1、 Turn into numpy The array is redrawn into a point cloud
import open3d as o3d
import numpy as np
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()
v_mesh = np.asarray(mesh.vertices)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(v_mesh)
o3d.visualization.draw_geometries([pcd], width=1280, height=720)

about ply The format of the file is ok , But if stl This triangular mesh , The result of transformation will be a little unsatisfactory .
2、 sampling
open3d Provides a sampling method , Sampling points can be set , simplified model .
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/ganyu.STL")
mesh.compute_vertex_normals()
pcd = o3d.geometry.TriangleMesh.sample_points_uniformly(mesh, number_of_points=10000) # Sampling point cloud
o3d.visualization.draw_geometries([pcd], width=1280, height=720)

3、 ... and 、 Voxelization
Voxelization , Can simplify the model , Get a uniform mesh .
Convert triangle mesh to voxel mesh
import open3d as o3d
import numpy as np
print("Load a ply point cloud, print it, and render it")
mesh = o3d.io.read_triangle_mesh("mode/ganyu.STL")
mesh.compute_vertex_normals()
mesh.scale(1 / np.max(mesh.get_max_bound() - mesh.get_min_bound()), center=mesh.get_center())
voxel_grid = o3d.geometry.VoxelGrid.create_from_triangle_mesh(mesh, voxel_size=0.05)
o3d.visualization.draw_geometries([voxel_grid], width=1280, height=720)

Point cloud generates voxel mesh
import open3d as o3d
import numpy as np
print("Load a ply point cloud, print it, and render it")
pcd = o3d.io.read_point_cloud("mode/Fantasy Dragon.ply")
pcd.scale(1 / np.max(pcd.get_max_bound() - pcd.get_min_bound()), center=pcd.get_center())
pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0,1,size=(2000,3)))
print('voxelization')
voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=0.05)
o3d.visualization.draw_geometries([voxel_grid], width=1280, height=720)

Four 、 Vertex normal estimation
voxel_down_pcd = pcd.voxel_down_sample(voxel_size=0.05)
voxel_down_pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
o3d.visualization.draw_geometries([voxel_down_pcd], point_show_normal=True, width=1280, height=720)
estimate_normals Calculate the normal of each point . This function finds adjacent points and calculates the principal axis of adjacent points using covariance analysis .
This function will KDTreeSearchParamHybrid Class as a parameter . The two key parameters are the specified search radius and the maximum nearest neighbor .radius=0.1, max_nn=30 That is to 10cm Search radius for , And only consider 30 Adjacent points to save computing time .

Read the normal vector
print(" Print the first vector :")
print(voxel_down_pcd.normals[0])
# Print the first vector :
#[ 0.51941952 0.82116269 -0.23642166]
# Print the first ten normal vectors
print(np.asarray(voxel_down_pcd.normals)[:10,:])
5、 ... and 、 What should be noted
- pcd The format file belongs to the point cloud type ,ply It can be read in point cloud and grid mode at the same time , use mesh When reading , It can be treated as triangular mesh , use pcd Reading can be directly used as point cloud data processing .
- When triangle meshes are directly sampled and then normals are calculated, there will be errors in normal annotation , That is, all normals point in one direction .
- To avoid sampling normal errors, use
sample_points_poisson_disk()Method sampling .
边栏推荐
- MMDetection安装问题
- Remplacer l'auto - attention par MLP
- 【雙目視覺】雙目矯正
- 【TCDCN】《Facial landmark detection by deep multi-task learning》
- 【Wing Loss】《Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks》
- 解决jetson nano安装onnx错误(ERROR: Failed building wheel for onnx)总结
- PHP returns the abbreviation of the month according to the numerical month
- How to clean up logs on notebook computers to improve the response speed of web pages
- PPT的技巧
- Open3D学习笔记一【初窥门径,文件读取】
猜你喜欢

Replace convolution with full connection layer -- repmlp

【Sparse-to-Dense】《Sparse-to-Dense:Depth Prediction from Sparse Depth Samples and a Single Image》

【Mixed Pooling】《Mixed Pooling for Convolutional Neural Networks》

【AutoAugment】《AutoAugment:Learning Augmentation Policies from Data》

Thesis writing tip2

Faster-ILOD、maskrcnn_benchmark训练coco数据集及问题汇总

jetson nano安装tensorflow踩坑记录(scipy1.4.1)

label propagation 标签传播

Installation and use of image data crawling tool Image Downloader

【Batch】learning notes
随机推荐
Thesis writing tip2
Convert timestamp into milliseconds and format time in PHP
Faster-ILOD、maskrcnn_benchmark训练coco数据集及问题汇总
Jetson nano installation tensorflow stepping pit record (scipy1.4.1)
【Hide-and-Seek】《Hide-and-Seek: A Data Augmentation Technique for Weakly-Supervised Localization xxx》
图像增强的几个方法以及Matlab代码
ModuleNotFoundError: No module named ‘pytest‘
TimeCLR: A self-supervised contrastive learning framework for univariate time series representation
半监督之mixmatch
What if the notebook computer cannot run the CMD command
[mixup] mixup: Beyond Imperial Risk Minimization
【双目视觉】双目矫正
What if the laptop task manager is gray and unavailable
【Sparse-to-Dense】《Sparse-to-Dense:Depth Prediction from Sparse Depth Samples and a Single Image》
程序的内存模型
How do vision transformer work?【论文解读】
C#与MySQL数据库连接
【MnasNet】《MnasNet:Platform-Aware Neural Architecture Search for Mobile》
Replace self attention with MLP
【TCDCN】《Facial landmark detection by deep multi-task learning》