当前位置:网站首页>Open3d learning note 3 [sampling and voxelization]
Open3d learning note 3 [sampling and voxelization]
2022-07-02 07:54:00 【Silent clouds】
open3d Voxelization of learning notes
One 、 Add some small knowledge
1、 With mesh Mode reading ply file
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()
2. Rotation matrix
The 3D model uses R,T Two parameters to transform , The spatial coordinate system of the view is established : Up for z Axis , To the right is y Axis ,x The axis points to the front of the screen . Use transform
Method transform coordinates , The transformation matrix is [4*4] Matrix ,transform([[R, T], [0, 1]])
.
Read one normally ply file :
import open3d as o3d
pcd = o3d.io.read_point_cloud("mode/Fantasy Dragon.ply")
o3d.visualization.draw_geometries([pcd], width=1280, height=720)
The display effect is as shown in the figure :
Use the conversion function , Put him horizontally , And the head faces the screen . Then it is to change the original z Shaft change to y Axis ,y Shaft change to x Axis ,x Shaft change to z Axis , So the code is :
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()
mesh.transform([[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1]])
o3d.visualization.draw_geometries([mesh], width=1280, height=720)
effect :
Two 、 The way to convert to point cloud
1、 Turn into numpy The array is redrawn into a point cloud
import open3d as o3d
import numpy as np
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()
v_mesh = np.asarray(mesh.vertices)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(v_mesh)
o3d.visualization.draw_geometries([pcd], width=1280, height=720)
about ply The format of the file is ok , But if stl This triangular mesh , The result of transformation will be a little unsatisfactory .
2、 sampling
open3d Provides a sampling method , Sampling points can be set , simplified model .
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/ganyu.STL")
mesh.compute_vertex_normals()
pcd = o3d.geometry.TriangleMesh.sample_points_uniformly(mesh, number_of_points=10000) # Sampling point cloud
o3d.visualization.draw_geometries([pcd], width=1280, height=720)
3、 ... and 、 Voxelization
Voxelization , Can simplify the model , Get a uniform mesh .
Convert triangle mesh to voxel mesh
import open3d as o3d
import numpy as np
print("Load a ply point cloud, print it, and render it")
mesh = o3d.io.read_triangle_mesh("mode/ganyu.STL")
mesh.compute_vertex_normals()
mesh.scale(1 / np.max(mesh.get_max_bound() - mesh.get_min_bound()), center=mesh.get_center())
voxel_grid = o3d.geometry.VoxelGrid.create_from_triangle_mesh(mesh, voxel_size=0.05)
o3d.visualization.draw_geometries([voxel_grid], width=1280, height=720)
Point cloud generates voxel mesh
import open3d as o3d
import numpy as np
print("Load a ply point cloud, print it, and render it")
pcd = o3d.io.read_point_cloud("mode/Fantasy Dragon.ply")
pcd.scale(1 / np.max(pcd.get_max_bound() - pcd.get_min_bound()), center=pcd.get_center())
pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0,1,size=(2000,3)))
print('voxelization')
voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=0.05)
o3d.visualization.draw_geometries([voxel_grid], width=1280, height=720)
Four 、 Vertex normal estimation
voxel_down_pcd = pcd.voxel_down_sample(voxel_size=0.05)
voxel_down_pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
o3d.visualization.draw_geometries([voxel_down_pcd], point_show_normal=True, width=1280, height=720)
estimate_normals
Calculate the normal of each point . This function finds adjacent points and calculates the principal axis of adjacent points using covariance analysis .
This function will KDTreeSearchParamHybrid
Class as a parameter . The two key parameters are the specified search radius and the maximum nearest neighbor .radius=0.1, max_nn=30
That is to 10cm Search radius for , And only consider 30 Adjacent points to save computing time .
Read the normal vector
print(" Print the first vector :")
print(voxel_down_pcd.normals[0])
# Print the first vector :
#[ 0.51941952 0.82116269 -0.23642166]
# Print the first ten normal vectors
print(np.asarray(voxel_down_pcd.normals)[:10,:])
5、 ... and 、 What should be noted
- pcd The format file belongs to the point cloud type ,ply It can be read in point cloud and grid mode at the same time , use mesh When reading , It can be treated as triangular mesh , use pcd Reading can be directly used as point cloud data processing .
- When triangle meshes are directly sampled and then normals are calculated, there will be errors in normal annotation , That is, all normals point in one direction .
- To avoid sampling normal errors, use
sample_points_poisson_disk()
Method sampling .
边栏推荐
- (15) Flick custom source
- Proof and understanding of pointnet principle
- 【C#笔记】winform中保存DataGridView中的数据为Excel和CSV
- Jetson nano installation tensorflow stepping pit record (scipy1.4.1)
- What if the notebook computer cannot run the CMD command
- ModuleNotFoundError: No module named ‘pytest‘
- EKLAVYA -- 利用神经网络推断二进制文件中函数的参数
- Timeout docking video generation
- MMDetection安装问题
- 【AutoAugment】《AutoAugment:Learning Augmentation Policies from Data》
猜你喜欢
label propagation 标签传播
【Wing Loss】《Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks》
【学习笔记】反向误差传播之数值微分
Record of problems in the construction process of IOD and detectron2
Semi supervised mixpatch
ModuleNotFoundError: No module named ‘pytest‘
利用Transformer来进行目标检测和语义分割
[binocular vision] binocular stereo matching
Faster-ILOD、maskrcnn_ Benchmark installation process and problems encountered
【Cascade FPD】《Deep Convolutional Network Cascade for Facial Point Detection》
随机推荐
[CVPR‘22 Oral2] TAN: Temporal Alignment Networks for Long-term Video
[C # note] the data in DataGridView saved in WinForm is excel and CSV
【FastDepth】《FastDepth:Fast Monocular Depth Estimation on Embedded Systems》
How to clean up logs on notebook computers to improve the response speed of web pages
Translation of the paper "written mathematical expression recognition with bidirectionally trained transformer"
【DIoU】《Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression》
Semi supervised mixpatch
What if a new window always pops up when opening a folder on a laptop
将恶意软件嵌入到神经网络中
One book 1078: sum of fractional sequences
Timeout docking video generation
What if the laptop can't search the wireless network signal
Replace convolution with full connection layer -- repmlp
PPT的技巧
Correction binoculaire
How do vision transformer work?【论文解读】
win10+vs2017+denseflow编译
C#与MySQL数据库连接
Solve the problem of latex picture floating
iOD及Detectron2搭建过程问题记录