当前位置:网站首页>Open3d learning note 3 [sampling and voxelization]
Open3d learning note 3 [sampling and voxelization]
2022-07-02 07:54:00 【Silent clouds】
open3d Voxelization of learning notes
One 、 Add some small knowledge
1、 With mesh Mode reading ply file
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()
2. Rotation matrix
The 3D model uses R,T Two parameters to transform , The spatial coordinate system of the view is established : Up for z Axis , To the right is y Axis ,x The axis points to the front of the screen . Use transform
Method transform coordinates , The transformation matrix is [4*4] Matrix ,transform([[R, T], [0, 1]])
.
Read one normally ply file :
import open3d as o3d
pcd = o3d.io.read_point_cloud("mode/Fantasy Dragon.ply")
o3d.visualization.draw_geometries([pcd], width=1280, height=720)
The display effect is as shown in the figure :
Use the conversion function , Put him horizontally , And the head faces the screen . Then it is to change the original z Shaft change to y Axis ,y Shaft change to x Axis ,x Shaft change to z Axis , So the code is :
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()
mesh.transform([[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1]])
o3d.visualization.draw_geometries([mesh], width=1280, height=720)
effect :
Two 、 The way to convert to point cloud
1、 Turn into numpy The array is redrawn into a point cloud
import open3d as o3d
import numpy as np
mesh = o3d.io.read_triangle_mesh("mode/Fantasy Dragon.ply")
mesh.compute_vertex_normals()
v_mesh = np.asarray(mesh.vertices)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(v_mesh)
o3d.visualization.draw_geometries([pcd], width=1280, height=720)
about ply The format of the file is ok , But if stl This triangular mesh , The result of transformation will be a little unsatisfactory .
2、 sampling
open3d Provides a sampling method , Sampling points can be set , simplified model .
import open3d as o3d
mesh = o3d.io.read_triangle_mesh("mode/ganyu.STL")
mesh.compute_vertex_normals()
pcd = o3d.geometry.TriangleMesh.sample_points_uniformly(mesh, number_of_points=10000) # Sampling point cloud
o3d.visualization.draw_geometries([pcd], width=1280, height=720)
3、 ... and 、 Voxelization
Voxelization , Can simplify the model , Get a uniform mesh .
Convert triangle mesh to voxel mesh
import open3d as o3d
import numpy as np
print("Load a ply point cloud, print it, and render it")
mesh = o3d.io.read_triangle_mesh("mode/ganyu.STL")
mesh.compute_vertex_normals()
mesh.scale(1 / np.max(mesh.get_max_bound() - mesh.get_min_bound()), center=mesh.get_center())
voxel_grid = o3d.geometry.VoxelGrid.create_from_triangle_mesh(mesh, voxel_size=0.05)
o3d.visualization.draw_geometries([voxel_grid], width=1280, height=720)
Point cloud generates voxel mesh
import open3d as o3d
import numpy as np
print("Load a ply point cloud, print it, and render it")
pcd = o3d.io.read_point_cloud("mode/Fantasy Dragon.ply")
pcd.scale(1 / np.max(pcd.get_max_bound() - pcd.get_min_bound()), center=pcd.get_center())
pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0,1,size=(2000,3)))
print('voxelization')
voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=0.05)
o3d.visualization.draw_geometries([voxel_grid], width=1280, height=720)
Four 、 Vertex normal estimation
voxel_down_pcd = pcd.voxel_down_sample(voxel_size=0.05)
voxel_down_pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
o3d.visualization.draw_geometries([voxel_down_pcd], point_show_normal=True, width=1280, height=720)
estimate_normals
Calculate the normal of each point . This function finds adjacent points and calculates the principal axis of adjacent points using covariance analysis .
This function will KDTreeSearchParamHybrid
Class as a parameter . The two key parameters are the specified search radius and the maximum nearest neighbor .radius=0.1, max_nn=30
That is to 10cm Search radius for , And only consider 30 Adjacent points to save computing time .
Read the normal vector
print(" Print the first vector :")
print(voxel_down_pcd.normals[0])
# Print the first vector :
#[ 0.51941952 0.82116269 -0.23642166]
# Print the first ten normal vectors
print(np.asarray(voxel_down_pcd.normals)[:10,:])
5、 ... and 、 What should be noted
- pcd The format file belongs to the point cloud type ,ply It can be read in point cloud and grid mode at the same time , use mesh When reading , It can be treated as triangular mesh , use pcd Reading can be directly used as point cloud data processing .
- When triangle meshes are directly sampled and then normals are calculated, there will be errors in normal annotation , That is, all normals point in one direction .
- To avoid sampling normal errors, use
sample_points_poisson_disk()
Method sampling .
边栏推荐
- 【AutoAugment】《AutoAugment:Learning Augmentation Policies from Data》
- One book 1078: sum of fractional sequences
- Implementation of yolov5 single image detection based on onnxruntime
- [C # note] the data in DataGridView saved in WinForm is excel and CSV
- What if the laptop task manager is gray and unavailable
- Faster-ILOD、maskrcnn_benchmark安装过程及遇到问题
- 【MagNet】《Progressive Semantic Segmentation》
- 【Mixup】《Mixup:Beyond Empirical Risk Minimization》
- Faster-ILOD、maskrcnn_benchmark训练自己的voc数据集及问题汇总
- [Sparse to Dense] Sparse to Dense: Depth Prediction from Sparse Depth samples and a Single Image
猜你喜欢
【FastDepth】《FastDepth:Fast Monocular Depth Estimation on Embedded Systems》
论文写作tip2
Replace self attention with MLP
超时停靠视频生成
[CVPR‘22 Oral2] TAN: Temporal Alignment Networks for Long-term Video
【Sparse-to-Dense】《Sparse-to-Dense:Depth Prediction from Sparse Depth Samples and a Single Image》
Feature Engineering: summary of common feature transformation methods
【MagNet】《Progressive Semantic Segmentation》
Thesis writing tip2
MMDetection安装问题
随机推荐
Timeout docking video generation
Thesis writing tip2
MMDetection模型微调
What if the laptop task manager is gray and unavailable
C#与MySQL数据库连接
【MagNet】《Progressive Semantic Segmentation》
Apple added the first iPad with lightning interface to the list of retro products
浅谈深度学习中的对抗样本及其生成方法
Sorting out dialectics of nature
【MobileNet V3】《Searching for MobileNetV3》
Win10 solves the problem that Internet Explorer cannot be installed
The hystrix dashboard reported an error hystrix Stream is not in the allowed list of proxy host names solution
【Paper Reading】
[binocular vision] binocular stereo matching
Thesis tips
Nacos service registration in the interface
【学习笔记】Matlab自编高斯平滑器+Sobel算子求导
Memory model of program
Common CNN network innovations
Installation and use of image data crawling tool Image Downloader