当前位置:网站首页>谷歌官方回应:我们没有放弃TensorFlow,未来与JAX并肩发展

谷歌官方回应:我们没有放弃TensorFlow,未来与JAX并肩发展

2022-07-04 07:33:00 Tom Hardy

作者丨陈萍

来源丨机器之心

TensorFlow 不是谷歌的一枚「弃子」,将会继续开发。

前段时间,AI 界流传着这样一种说法,大概意思就是说,TensorFlow 已经成为了谷歌的一枚「弃子」。

更是有外媒 Business Insider 采访了一系列开发人员、硬件专家、云供应商以及与谷歌机器学习工作关系密切的人,获得了同样的观点:2015 年诞生的 TensorFlow,曾经辉煌一时,而 Meta 在 2017 年开源的 PyTorch 正在成为该领域的霸主,在此战争中,谷歌开始押宝 JAX。

9765db76063b713d624829e798f483f4.png

接近该项目的人士曾告诉 Insider,谷歌大脑和 DeepMind 在很大程度上放弃了 TensorFlow,转而使用 JAX。一位谷歌内部人士也向 Insider 证实,JAX 现在几乎已在谷歌大脑和 DeepMind 中被全球采用。

熟悉该项目的人士也表示,JAX 现在有望成为未来几年所有使用机器学习的谷歌产品的支柱,就像 TensorFlow 在 2015 年之后几年所做的那样。

一时之间,关于谷歌要放弃 TensorFlow,全面转向 JAX 的说法闹得人尽皆知。谷歌内部人员的爆料,让人更加确信这一说法是真的。

到底事实如何?TensorFlow 官方博客回应来了,这篇回应来自 TensorFlow 团队中的两位研究者 Laurence Moroney 和 Josh Gordon。总结来说就是:谷歌并没有像网传的那样放弃 TensorFlow,将继续投资研发。

谷歌:我们没有放弃 TensorFlow,将与 JAX 并肩发展

Stack Overflow 最近发布了一项调查报告,报告显示 TensorFlow 是目前最常用的 ML 工具,被 300 万软件开发者采用。其实这一数字才刚刚开始,估计会有 400 万开发人员希望在不久的将来采用它。

5df6eb2a236f7347adc707a3c01ca3cc.png

图源:https://survey.stackoverflow.co/2022/#most-loved-dreaded-and-wanted-misc-tech-want

TensorFlow 现在每月被下载超过 18M 次,在 GitHub 上积累了 166k 颗星——比任何其他 ML 框架都多。在谷歌内部,TensorFlow 几乎支持所有 AI 生产工作流,包括搜索、广告、YouTube、GMail、地图、Play 等。它还被苹果、Netflix、Stripe、腾讯、优步、罗氏、LinkedIn、Twitter、百度、LVMH 等各大公司采用。

Google Scholar 上每个月都有超过 3000 篇出版物提到 TensorFlow,包括重要的应用科学研究,比如了解癌症的 CANDLE 研究。

66d980e10e3cf4aed8a9def64f5d1288.png

近年来,我们了解到单一的通用框架无法适用于所有场景——尤其是在生产和前沿研究经常发生冲突的领域。因此,我们创建了 JAX,这是一个用于分布式数值计算的简化 API,为科学计算研究的下一个时代提供动力。JAX 在推动新的领域方面非常出色:达到新的并行规模,此外还推进了新的算法和体系结构,以及帮助研究者开发新的编译器和系统。JAX 在科研领域确实很受欢迎。

在这个多框架世界中,TensorFlow 是我们交给应用 ML 开发人员的一份答案——工程师需要在不同规模和不同平台上构建和部署可靠、稳定、高性能的 ML 系统。我们的愿景是创建一个有凝聚力的生态系统,研究人员和工程师可以利用系统组件进行研究,而不管它们起源于哪个框架。我们已经在 JAX 和 TensorFlow 互操作性方面取得了长足进步,特别是 jax2tf 的开发。开发 JAX 模型的研究人员能够通过 TensorFlow 平台的工具将它们投入生产。

未来,我们继续开发 TensorFlow ,并将其作为一流的应用 ML 平台,与 JAX 并肩推动 ML 研究发展。我们将继续在这两个 ML 框架上投资,以推动研究和应用,为我们的数百万用户服务。

参考链接:https://blog.tensorflow.org/2022/06/%20bringing-machine-learning-to-every-developers-toolbox.html?m=1

本文仅做学术分享,如有侵权,请联系删文。

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

计算机视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的多传感器数据融合技术

2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

9.从零搭建一套结构光3D重建系统[理论+源码+实践]

10.单目深度估计方法:算法梳理与代码实现

11.自动驾驶中的深度学习模型部署实战

12.相机模型与标定(单目+双目+鱼眼)

13.重磅!四旋翼飞行器:算法与实战

14.ROS2从入门到精通:理论与实战

15.国内首个3D缺陷检测教程:理论、源码与实战

重磅!计算机视觉工坊-学习交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有ORB-SLAM系列源码学习、3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、深度估计、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

a279588f6d0ebb738c30d90334e2fc18.jpeg

▲长按加微信群或投稿

061e508126f8e946abddc82b71d227d3.jpeg

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列三维点云系列结构光系列手眼标定相机标定激光/视觉SLAM自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

30dea01ff456b4c6482175583b6c0517.jpeg

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

原网站

版权声明
本文为[Tom Hardy]所创,转载请带上原文链接,感谢
https://blog.csdn.net/qq_29462849/article/details/125580289