当前位置:网站首页>谷歌官方回应:我们没有放弃TensorFlow,未来与JAX并肩发展
谷歌官方回应:我们没有放弃TensorFlow,未来与JAX并肩发展
2022-07-04 07:33:00 【Tom Hardy】
作者丨陈萍
来源丨机器之心
TensorFlow 不是谷歌的一枚「弃子」,将会继续开发。
前段时间,AI 界流传着这样一种说法,大概意思就是说,TensorFlow 已经成为了谷歌的一枚「弃子」。
更是有外媒 Business Insider 采访了一系列开发人员、硬件专家、云供应商以及与谷歌机器学习工作关系密切的人,获得了同样的观点:2015 年诞生的 TensorFlow,曾经辉煌一时,而 Meta 在 2017 年开源的 PyTorch 正在成为该领域的霸主,在此战争中,谷歌开始押宝 JAX。
接近该项目的人士曾告诉 Insider,谷歌大脑和 DeepMind 在很大程度上放弃了 TensorFlow,转而使用 JAX。一位谷歌内部人士也向 Insider 证实,JAX 现在几乎已在谷歌大脑和 DeepMind 中被全球采用。
熟悉该项目的人士也表示,JAX 现在有望成为未来几年所有使用机器学习的谷歌产品的支柱,就像 TensorFlow 在 2015 年之后几年所做的那样。
一时之间,关于谷歌要放弃 TensorFlow,全面转向 JAX 的说法闹得人尽皆知。谷歌内部人员的爆料,让人更加确信这一说法是真的。
到底事实如何?TensorFlow 官方博客回应来了,这篇回应来自 TensorFlow 团队中的两位研究者 Laurence Moroney 和 Josh Gordon。总结来说就是:谷歌并没有像网传的那样放弃 TensorFlow,将继续投资研发。
谷歌:我们没有放弃 TensorFlow,将与 JAX 并肩发展
Stack Overflow 最近发布了一项调查报告,报告显示 TensorFlow 是目前最常用的 ML 工具,被 300 万软件开发者采用。其实这一数字才刚刚开始,估计会有 400 万开发人员希望在不久的将来采用它。
图源:https://survey.stackoverflow.co/2022/#most-loved-dreaded-and-wanted-misc-tech-want
TensorFlow 现在每月被下载超过 18M 次,在 GitHub 上积累了 166k 颗星——比任何其他 ML 框架都多。在谷歌内部,TensorFlow 几乎支持所有 AI 生产工作流,包括搜索、广告、YouTube、GMail、地图、Play 等。它还被苹果、Netflix、Stripe、腾讯、优步、罗氏、LinkedIn、Twitter、百度、LVMH 等各大公司采用。
Google Scholar 上每个月都有超过 3000 篇出版物提到 TensorFlow,包括重要的应用科学研究,比如了解癌症的 CANDLE 研究。
近年来,我们了解到单一的通用框架无法适用于所有场景——尤其是在生产和前沿研究经常发生冲突的领域。因此,我们创建了 JAX,这是一个用于分布式数值计算的简化 API,为科学计算研究的下一个时代提供动力。JAX 在推动新的领域方面非常出色:达到新的并行规模,此外还推进了新的算法和体系结构,以及帮助研究者开发新的编译器和系统。JAX 在科研领域确实很受欢迎。
在这个多框架世界中,TensorFlow 是我们交给应用 ML 开发人员的一份答案——工程师需要在不同规模和不同平台上构建和部署可靠、稳定、高性能的 ML 系统。我们的愿景是创建一个有凝聚力的生态系统,研究人员和工程师可以利用系统组件进行研究,而不管它们起源于哪个框架。我们已经在 JAX 和 TensorFlow 互操作性方面取得了长足进步,特别是 jax2tf 的开发。开发 JAX 模型的研究人员能够通过 TensorFlow 平台的工具将它们投入生产。
未来,我们继续开发 TensorFlow ,并将其作为一流的应用 ML 平台,与 JAX 并肩推动 ML 研究发展。我们将继续在这两个 ML 框架上投资,以推动研究和应用,为我们的数百万用户服务。
参考链接:https://blog.tensorflow.org/2022/06/%20bringing-machine-learning-to-every-developers-toolbox.html?m=1
本文仅做学术分享,如有侵权,请联系删文。
干货下载与学习
后台回复:巴塞罗那自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件
后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf
后台回复:3D视觉课程,即可学习3D视觉领域精品课程
计算机视觉工坊精品课程官网:3dcver.com
2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)
重磅!计算机视觉工坊-学习交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有ORB-SLAM系列源码学习、3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、深度估计、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~
边栏推荐
- Routing decorator of tornado project
- 大学阶段总结
- Node connection MySQL access denied for user 'root' @ 'localhost' (using password: yes
- JVM -- class loading process and runtime data area
- JVM中堆概念
- Zephyr Learning note 2, Scheduling
- Four sets of APIs for queues
- L2-013 red alarm (C language) and relevant knowledge of parallel search
- 时序数据库 InfluxDB 2.2 初探
- Basic DOS commands
猜你喜欢
提升复杂场景三维重建精度 | 基于PaddleSeg分割无人机遥感影像
JVM中堆概念
用于压缩视频感知增强的多目标网络自适应时空融合
Write a thread pool by hand, and take you to learn the implementation principle of ThreadPoolExecutor thread pool
Guoguo took you to write a linked list, and the primary school students said it was good after reading it
L1-027 rental (20 points)
This article is enough for learning advanced mysql
[kubernetes series] kubesphere is installed on kubernetes
[web security] nodejs prototype chain pollution analysis
MySQL storage engine
随机推荐
Oceanbase is the leader in the magic quadrant of China's database in 2021
[Chongqing Guangdong education] National Open University spring 2019 770 real estate appraisal reference questions
【FreeRTOS】FreeRTOS學習筆記(7)— 手寫FreeRTOS雙向鏈錶/源碼分析
Zabbix agent主动模式的实现
Boosting the Performance of Video Compression Artifact Reduction with Reference Frame Proposals and
Zephyr 學習筆記2,Scheduling
Electronic Association C language level 1 35, bank interest
Boosting the Performance of Video Compression Artifact Reduction with Reference Frame Proposals and
CMS source code of multi wechat management system developed based on thinkphp6, with one click curd and other functions
L1-027 rental (20 points)
BUUCTF(3)
【FreeRTOS】FreeRTOS学习笔记(7)— 手写FreeRTOS双向链表/源码分析
Basic DOS commands
Boast about Devops
在所有SwiftUI版本(1.0-4.0)中原生实现Charts图表视图之思路
Types of references in BibTex
Status of the thread
Take you to master the formatter of visual studio code
[untitled] notice on holding "2022 traditional fermented food and modern brewing technology"
[FreeRTOS] FreeRTOS learning notes (7) - handwritten FreeRTOS two-way linked list / source code analysis