当前位置:网站首页>YOLOv5-Shufflenetv2

YOLOv5-Shufflenetv2

2022-07-05 05:16:00 马少爷

YOLOv5中修改网络结构的一般步骤:

models/common.py:在common.py文件中,加入要修改的模块代码
models/yolo.py:在yolo.py文件内的parse_model函数里添加新模块的名称
models/new_model.yaml:在models文件夹下新建模块对应的.yaml文件

一、Shufflenetv2
[Cite]Ma, Ningning, et al. “Shufflenet v2: Practical guidelines for efficient cnn architecture design.” Proceedings of the European conference on computer vision (ECCV). 2018.
旷视轻量化卷积神经网络Shufflenetv2,通过大量实验提出四条轻量化网络设计准则,对输入输出通道、分组卷积组数、网络碎片化程度、逐元素操作对不同硬件上的速度和内存访问量MAC(Memory Access Cost)的影响进行了详细分析:

准则一:输入输出通道数相同时,内存访问量MAC最小
Mobilenetv2就不满足,采用了拟残差结构,输入输出通道数不相等
准则二:分组数过大的分组卷积会增加MAC
Shufflenetv1就不满足,采用了分组卷积(GConv)
准则三:碎片化操作(多通路,把网络搞的很宽)对并行加速不友好
Inception系列的网络
准则四:逐元素操作(Element-wise,例如ReLU、Shortcut-add等)带来的内存和耗时不可忽略
Shufflenetv1就不满足,采用了add操作
针对以上四条准则,作者提出了Shufflenetv2模型,通过Channel Split替代分组卷积,满足四条设计准则,达到了速度和精度的最优权衡。
模型概述
**a**
Shufflenetv2有两个结构:basic unit和unit from spatial down sampling(2×)

basic unit:输入输出通道数不变,大小也不变
unit from spatial down sample :输出通道数扩大一倍,大小缩小一倍(降采样)
Shufflenetv2整体哲学要紧紧向论文中提出的轻量化四大准则靠拢,基本除了准则四之外,都有效的避免了。
在这里插入图片描述

为了解决GConv(Group Convolution)导致的不同group之间没有信息交流,只在同一个group内进行特征提取的问题,Shufflenetv2设计了Channel Shuffle操作进行通道重排,跨group信息交流

class ShuffleBlock(nn.Module):
    def __init__(self, groups=2):
        super(ShuffleBlock, self).__init__()
        self.groups = groups

    def forward(self, x):
        '''Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,W] -> [N,C,H,W]'''
        N, C, H, W = x.size()
        g = self.groups
        return x.view(N, g, C//g, H, W).permute(0, 2, 1, 3, 4).reshape(N, C, H, W)

加入YOLOv5
common.py文件修改:直接在最下面加入如下代码

# ---------------------------- ShuffleBlock start -------------------------------

# 通道重排,跨group信息交流
def channel_shuffle(x, groups):
    batchsize, num_channels, height, width = x.data.size()
    channels_per_group = num_channels // groups

    # reshape
    x = x.view(batchsize, groups,
               channels_per_group, height, width)

    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x


class conv_bn_relu_maxpool(nn.Module):
    def __init__(self, c1, c2):  # ch_in, ch_out
        super(conv_bn_relu_maxpool, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(c2),
            nn.ReLU(inplace=True),
        )
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)

    def forward(self, x):
        return self.maxpool(self.conv(x))


class Shuffle_Block(nn.Module):
    def __init__(self, inp, oup, stride):
        super(Shuffle_Block, self).__init__()

        if not (1 <= stride <= 3):
            raise ValueError('illegal stride value')
        self.stride = stride

        branch_features = oup // 2
        assert (self.stride != 1) or (inp == branch_features << 1)

        if self.stride > 1:
            self.branch1 = nn.Sequential(
                self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
                nn.BatchNorm2d(inp),
                nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True),
            )

        self.branch2 = nn.Sequential(
            nn.Conv2d(inp if (self.stride > 1) else branch_features,
                      branch_features, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
            self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
            nn.BatchNorm2d(branch_features),
            nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
        )

    @staticmethod
    def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
        return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)

    def forward(self, x):
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)  # 按照维度1进行split
            out = torch.cat((x1, self.branch2(x2)), dim=1)
        else:
            out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

        out = channel_shuffle(out, 2)

        return out

# ---------------------------- ShuffleBlock end --------------------------------

yolo.py文件修改:在yolo.py的parse_model函数中,加入conv_bn_relu_maxpool, Shuffle_Block两个模块(如下图红框所示)

在这里插入图片描述
新建yaml文件:在model文件下新建yolov5-shufflenetv2.yaml文件,复制以下代码即可

# YOLOv5  by Ultralytics, GPL-3.0 license

# Parameters
nc: 20  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  # Shuffle_Block: [out, stride]
  [[ -1, 1, conv_bn_relu_maxpool, [ 32 ] ], # 0-P2/4
   [ -1, 1, Shuffle_Block, [ 128, 2 ] ],  # 1-P3/8
   [ -1, 3, Shuffle_Block, [ 128, 1 ] ],  # 2
   [ -1, 1, Shuffle_Block, [ 256, 2 ] ],  # 3-P4/16
   [ -1, 7, Shuffle_Block, [ 256, 1 ] ],  # 4
   [ -1, 1, Shuffle_Block, [ 512, 2 ] ],  # 5-P5/32
   [ -1, 3, Shuffle_Block, [ 512, 1 ] ],  # 6
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, C3, [256, False]],  # 10

   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 2], 1, Concat, [1]],  # cat backbone P3
   [-1, 1, C3, [128, False]],  # 14 (P3/8-small)

   [-1, 1, Conv, [128, 3, 2]],
   [[-1, 11], 1, Concat, [1]],  # cat head P4
   [-1, 1, C3, [256, False]],  # 17 (P4/16-medium)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 7], 1, Concat, [1]],  # cat head P5
   [-1, 1, C3, [512, False]],  # 20 (P5/32-large)

   [[14, 17, 20], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

参考文献:https://blog.csdn.net/weixin_43799388/article/details/123597320

原网站

版权声明
本文为[马少爷]所创,转载请带上原文链接,感谢
https://blog.csdn.net/qq_27353621/article/details/125608775