当前位置:网站首页>Pytorch实现简单线性回归Demo
Pytorch实现简单线性回归Demo
2022-07-06 09:16:00 【想成为风筝】
Pytorch实现简单线性回归
import numpy as np
x_values = [i for i in range(11)]
x_train = np.array(x_values,dtype=np.float32)
x_train = x_train.reshape(-1,1)
print(x_train.shape)
y_values = [2*i+1 for i in x_values]
y_train = np.array(y_values,dtype=np.float32)
y_train = y_train.reshape(-1,1)
print(y_train.shape)
import torch
import torch.nn as nn
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
class LinearRegressionModel(nn.Module):
def __init__(self,input_dim,output_dim):
super(LinearRegressionModel, self).__init__()
self.Linear = nn.Linear(input_dim,output_dim)
def forward(self,x):
out = self.Linear(x)
return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim,output_dim)
model.to(device)
losses = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(),lr=0.01)
epochs = 1000
for epoch in range(epochs):
epoch += 1
inputs = torch.from_numpy(x_train).to(device)
outputs = torch.from_numpy(y_train).to(device)
optimizer.zero_grad()
out = model(inputs)
loss = losses(out,outputs)
loss.backward()
optimizer.step()
if epoch % 50 == 0:
print('epoch {},loss {}'.format(epoch,loss))
#预测
predicted =model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
print(predicted)
# #保存
# torch.save(model.state_dict(),'model.pkl') #保存模型的参数 w b
# #加载
# model.load_state_dict(torch.load('model.pkl')) #加载
边栏推荐
猜你喜欢
随机推荐
XML file explanation: what is XML, XML configuration file, XML data file, XML file parsing tutorial
Detailed explanation of nodejs
Those commonly used tool classes and methods in hutool
[蓝桥杯2017初赛]方格分割
Software I2C based on Hal Library
Kept VRRP script, preemptive delay, VIP unicast details
MongoDB
互联网协议详解
[Flink] cdh/cdp Flink on Yan log configuration
数据库面试常问的一些概念
Heating data in data lake?
Vs2019 first MFC Application
Come and walk into the JVM
【CDH】CDH/CDP 环境修改 cloudera manager默认端口7180
jS数组+数组方法重构
Codeforces Round #771 (Div. 2)
Vert. x: A simple login access demo (simple use of router)
SQL时间注入
Linux yum安装MySQL
4、安装部署Spark(Spark on Yarn模式)