当前位置:网站首页>C language implements XML generation and parsing library (XML extension)
C language implements XML generation and parsing library (XML extension)
2022-07-02 08:06:00 【Kun Yu】
It's a little boring at home during the holiday , Some time ago, yes XML Generation 、 I'm interested in parsing , Then according to oneself to XML With the understanding of linked lists to achieve a XML The structure of production and analysis .
The design adopts fixed format header information plus custom header information :
《?xml version=”xml” encoding=”Utf-8”? 》 This data belongs to fixed format header , Inside ”xml” and ”Utf-8” It can be modified through library functions ;
《?567?》 This data belongs to user-defined header , Can freely increase ;
node 、 Elements and element data adopt names + Label type + Tag name + Label data composition , The name cannot be omitted , type 、 The data name and data can be added at will :
《test3 table1 tablename1=”tabledata1”》 In this data test3 Is the node name ,table1 Is the node label type ,tablename1 It's the label name ,tabledata1 It's tag data ;
Let's talk about the structure of the Library :
First look at the renderings : 
Rendering under a large amount of data :
边栏推荐
- C # connect to MySQL database
- 乐理基础(简述)
- Vscode下中文乱码问题
- 用于类别增量学习的动态可扩展表征 -- DER
- 【Sparse-to-Dense】《Sparse-to-Dense:Depth Prediction from Sparse Depth Samples and a Single Image》
- Find and rfind methods in string
- Matlab数学建模工具
- 针对tqdm和print的顺序问题
- MySQL优化
- Global and Chinese market of recovery equipment 2022-2028: Research Report on technology, participants, trends, market size and share
猜你喜欢

【Wing Loss】《Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks》

Simply test the two different data transmission methods of content length and chunked

open3d学习笔记四【表面重建】

Dynamic extensible representation for category incremental learning -- der
![[Sparse to Dense] Sparse to Dense: Depth Prediction from Sparse Depth samples and a Single Image](/img/05/bf131a9e2716c9147a5473db4d0a5b.png)
[Sparse to Dense] Sparse to Dense: Depth Prediction from Sparse Depth samples and a Single Image

open3d学习笔记五【RGBD融合】

What if the notebook computer cannot run the CMD command

【Random Erasing】《Random Erasing Data Augmentation》

【雙目視覺】雙目矯正

Open3D学习笔记一【初窥门径,文件读取】
随机推荐
VS Code配置问题
Open3d learning note 3 [sampling and voxelization]
Cvpr19 deep stacked hierarchical multi patch network for image deblurring paper reproduction
Simply test the two different data transmission methods of content length and chunked
【MnasNet】《MnasNet:Platform-Aware Neural Architecture Search for Mobile》
[binocular vision] binocular correction
【BiSeNet】《BiSeNet:Bilateral Segmentation Network for Real-time Semantic Segmentation》
[C # note] the data in DataGridView saved in WinForm is excel and CSV
Get the width and height of the screen in real time (adaptive)
【Random Erasing】《Random Erasing Data Augmentation》
Backup, recovery and repair of XFS file system
静态库和动态库
Open3D学习笔记一【初窥门径,文件读取】
Income in the first month of naked resignation
[binocular vision] binocular stereo matching
Dynamic extensible representation for category incremental learning -- der
Media query usage
力扣每日一题刷题总结:栈与队列篇(持续更新)
Global and Chinese market of recovery equipment 2022-2028: Research Report on technology, participants, trends, market size and share
Brief introduction of prompt paradigm