当前位置:网站首页>简易打包工具的安装与使用
简易打包工具的安装与使用
2022-07-02 06:27:00 【任亚兵】
使用条件
·1.打包工具
链接:https://pan.baidu.com/s/1QqRpZG4H0X_1evHGVxA-MQ
提取码:r31p
2.使开发环境生成解决方案无错
打包过程
1.打包工具解压后界面,并点击SUF20Dssign.exe
2.出现以下界面,等一会
3.点击关闭
4. 会出现以下界面,点击创建新工程
5.红框内容填写,其他默认
6.点击“下一页”
浏览选中自己项目中的启动项目中的bin\x64Debug
7.有默认操作,不做任何操作,一路点击下一页,
8.选中语言
先点击标红第一步,中文简体 chinese(Simplified) 再选中默认的下拉框, chinese(Simplified)
9.有默认操作,不做任何操作,一路点击下一页,
10.在以下页面直接点击完成
系统会生成界面,
如果要使生成的的打包程序解压后在桌面生成快捷方式,
在项目的主界面右击“文件属性”
选中桌面点击“确定”
11.点击“发布”——“构建”
12不做任何操作,默认点击下一页
13.选中打包文件的位置,点击构建
等待,并点击完成。
所要打包的程序放在第13步的文件夹中,非常易操作
总结
这个打包软件非常好用,本博客流程清晰,如果有用就点赞收藏啊!
边栏推荐
- Installation and use of image data crawling tool Image Downloader
- open3d学习笔记三【采样与体素化】
- 【Sparse-to-Dense】《Sparse-to-Dense:Depth Prediction from Sparse Depth Samples and a Single Image》
- 【Random Erasing】《Random Erasing Data Augmentation》
- 【MobileNet V3】《Searching for MobileNetV3》
- The difference and understanding between generative model and discriminant model
- Replace self attention with MLP
- 【AutoAugment】《AutoAugment:Learning Augmentation Policies from Data》
- 半监督之mixmatch
- 【Cutout】《Improved Regularization of Convolutional Neural Networks with Cutout》
猜你喜欢
浅谈深度学习中的对抗样本及其生成方法
What if the laptop task manager is gray and unavailable
【BiSeNet】《BiSeNet:Bilateral Segmentation Network for Real-time Semantic Segmentation》
[binocular vision] binocular stereo matching
Programmers can only be 35? The 74 year old programmer in the United States has been programming for 57 years and has not retired
Correction binoculaire
The difference and understanding between generative model and discriminant model
【DIoU】《Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression》
How to clean up logs on notebook computers to improve the response speed of web pages
Machine learning theory learning: perceptron
随机推荐
Handwritten call, apply, bind
【MnasNet】《MnasNet:Platform-Aware Neural Architecture Search for Mobile》
Common CNN network innovations
利用Transformer来进行目标检测和语义分割
latex公式正体和斜体
How do vision transformer work?【论文解读】
【Mixup】《Mixup:Beyond Empirical Risk Minimization》
Sorting out dialectics of nature
[learning notes] matlab self compiled image convolution function
Execution of procedures
JVM instructions
open3d学习笔记四【表面重建】
Pointnet understanding (step 4 of pointnet Implementation)
MoCO ——Momentum Contrast for Unsupervised Visual Representation Learning
【Mixed Pooling】《Mixed Pooling for Convolutional Neural Networks》
【FastDepth】《FastDepth:Fast Monocular Depth Estimation on Embedded Systems》
How to turn on night mode on laptop
Summary of solving the Jetson nano installation onnx error (error: failed building wheel for onnx)
Common machine learning related evaluation indicators
针对语义分割的真实世界的对抗样本攻击