当前位置:网站首页>Meta learning Brief
Meta learning Brief
2022-07-02 07:57:00 【MezereonXP】
Meta Learning sketch
Let's review , Traditional machine learning or deep learning process :
- Identify training and test data sets
- Determine the model structure
- Initialize model parameters ( Usually some commonly used random distribution )
- Initialize optimizer types and parameters
- Training , Until it converges
Meta Learning The goal is to learn some steps 2,3,4 Parameters of , We call it Meta knowledge (meta- knowledge)
It might as well be formalized
Suppose the data set is D = { ( x 1 , y 1 ) , . . . , ( x N , y N ) } D = \{(x_1,y_1),...,(x_N,y_N)\} D={ (x1,y1),...,(xN,yN)} among x i x_i xi It's input , y i y_i yi Is the output tag
Our goal is to get a prediction model y ^ = f ( x ; θ ) \hat{y} = f(x;\theta) y^=f(x;θ) , among θ \theta θ Represent the parameters of the model , x x x For input at the same time y ^ \hat{y} y^ Is the output of the prediction
The form of optimization is :
θ ∗ = arg min θ L ( D ; θ , ω ) \theta^*=\arg \min_{\theta} \mathcal{L}(D;\theta,\omega) θ∗=argθminL(D;θ,ω)
Among them ω \omega ω Meta knowledge , Include :
- Optimizer type
- Model structure
- Initial distribution of model parameters
- …
We will compare the existing data sets D D D Divide tasks , Cut into multiple task sets , Each task set includes a training set and a test set , In the form of :
D s o u r c e = { ( D s o u r c e t r a i n , D s o u r c e v a l ) ( i ) } i = 1 M D_{source} = \{(D^{train}_{source},D^{val}_{source})^{(i)}\}_{i=1}^{M} Dsource={ (Dsourcetrain,Dsourceval)(i)}i=1M
The optimization objective is :
ω ∗ = arg max ω log p ( ω ∣ D s o u r c e ) \omega^* = \arg \max_{\omega} \log p(\omega|D_{source}) ω∗=argωmaxlogp(ω∣Dsource)
That is, in the multiple task sets we segment , Find a set of configurations ( That is, meta knowledge ), Make it optimal for these tasks .
This step is generally called Meta training (meta-training)
find ω ∗ \omega^* ω∗ after , It can be applied to a target task data set D t a r g e t = { ( D t a r g e t t r a i n , D t a r g e t v a l ) } D_{target} = \{(D_{target}^{train}, D_{target}^{val})\} Dtarget={ (Dtargettrain,Dtargetval)}
Carry out traditional training on this , That is to find an optimal model parameter θ ∗ \theta^* θ∗
θ ∗ = arg max θ log p ( θ ∣ ω ∗ , D t a r g e t t r a i n ) \theta^* = \arg\max_{\theta}\log p(\theta|\omega^*, D_{target}^{train}) θ∗=argθmaxlogp(θ∣ω∗,Dtargettrain)
This step is called Meta test (meta-testing)
边栏推荐
- [learning notes] matlab self compiled image convolution function
- 【Batch】learning notes
- 【Batch】learning notes
- 论文写作tip2
- 图像增强的几个方法以及Matlab代码
- Rhel7 operation level introduction and switching operation
- ABM thesis translation
- Replace self attention with MLP
- CVPR19-Deep Stacked Hierarchical Multi-patch Network for Image Deblurring论文复现
- 包图画法注意规范
猜你喜欢

【Cascade FPD】《Deep Convolutional Network Cascade for Facial Point Detection》

【Batch】learning notes

Implementation of yolov5 single image detection based on pytorch

What if the laptop task manager is gray and unavailable

What if the notebook computer cannot run the CMD command

【FastDepth】《FastDepth:Fast Monocular Depth Estimation on Embedded Systems》

【Wing Loss】《Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks》

【Sparse-to-Dense】《Sparse-to-Dense:Depth Prediction from Sparse Depth Samples and a Single Image》

【MagNet】《Progressive Semantic Segmentation》

浅谈深度学习模型中的后门
随机推荐
open3d环境错误汇总
Thesis tips
【多模态】CLIP模型
【MobileNet V3】《Searching for MobileNetV3》
CPU的寄存器
What if a new window always pops up when opening a folder on a laptop
Embedding malware into neural networks
Summary of open3d environment errors
论文tips
TimeCLR: A self-supervised contrastive learning framework for univariate time series representation
Command line is too long
半监督之mixmatch
【Cutout】《Improved Regularization of Convolutional Neural Networks with Cutout》
程序的内存模型
【TCDCN】《Facial landmark detection by deep multi-task learning》
Feature Engineering: summary of common feature transformation methods
联邦学习下的数据逆向攻击 -- GradInversion
【Programming】
针对语义分割的真实世界的对抗样本攻击
Implementation of yolov5 single image detection based on onnxruntime